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5G is Coming!

Bloomberg: Verizon CEO announced rolling

out of 5G services in Oct., 2018
B The 1° carrier in the world to get to 5G cellular. Sort of.
B Limited to home broadband services in 4 cities.

B Farly 5G launch uses non-industry-standard technology.

5G timeline of other major carriers in U.S.

B AT&T: Offer 5G as a true mobile service by the end of 2018.

B 'T-Mobile: Broader commercial service available early 2019.

B Sprint & LG: Promising the first 5G smartphone.




5G is Coming! (Cont’d)

Implications of Verizon launching 5G

B Tncomplete version, only provides limited 5G services

B Not ready for large-scale rollout, concerns about technological

maturity, cost, etc.

B Still much to do for industry standardization

Other limiting factors

B Availability of mmWave RF
B Reliability considerations
B Backhaul/fronthaul crunch
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5G NR Phase-1;: Massive MIMO

Disruptive technologies for 5G and their

technology status

Massive MIMO: The 1% step in 5G evolution

Idea proposed based on MU-MIMO around 2010

SDR-based prototypes: Argos (2012), LuMaMi (2014),
ARIES (2016), SEU-NUPT-ZZU (2016) etc.

Better compatibility with current RAN architecture
Commercial trials of the technology started in 2016
Already incorporated into 4.5G/pre-5G systems

Improves spectral efficiency by up to an order of magnitude
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A Little Bit Fundamentals

The basic massive MIMO model

B Uplink (with MF receiver)
Yu = VpuHXy + 1y
HY'H = D/2GEGDY? ~ ND'/?1;,D'/?2 = ND
Hly, = HH(\/p_uqu + n,)
~N/p.Dx, + H%n,
B Downlink (with MF precoding)
Ya = vpaH x4+ 1y
x, = H*D~1/2p1/2g,
va = orHTH*D~V2PY2, 4 n,
~ \/p_dNDl/zPl/zsd + ny




Prototyping Massive MIMO

SDR-based prototypes of massive MIMO

B A primitive form: Rice Argos based on WARP & PFGA
B Better integration of FPGA and RF I/O: USRP RIO
LuMaMi, SEU-NUPT-ZZU
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X. Yang, W. Lv, N. Wang, ¢z. a/, “Design and implementation of a TDD-based 128-antenna massive MIMO
prototype system,” China Communications, vol. 14, no. 12, pp. 162-187, 2017.




The Cost Challenge

B Due to the use of large number of antennas and RF chains
B Costin baseband digital processing 1s not dominant

B Bottleneck for cost cut 1s in the analog RF part

Possible technical solution directions

B Improve implementation efficiency of massive MIMO BSs
B Reduce manufacture cost of each massive MIMO BS

equipment
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The 5G Backhaul Crunch

Massive MIMO BS implementation in 5G HetNets

B Reduced macro-cell density for centralized massive MIMO

B Ultra-densen small cell networks

Underlying driving force for wireless backhaul
(WB) 1n 5G small cells
B LExtreme densification of small cell BSs

B Availability of wired backhaul resources: Backhaul crunch in
the 5G era

B Desirable feature of small cell equipments: Plug-and-play,
easy implementation and maintenance, like the white box
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The 5G Backhaul Crunch (Cont’
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N. Wang, E. Hossain, and V. K. Bhargava, “Backhauling 5G small cells: A radio resource management

perspective,” IEEE Wireless Commmunications, vol. 22, no.

5, pp. 41-49, 2015.
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Massive MIMO IB-WB

In-band wireless backhaul provided by massive

MIMO macro BS

B Better utilization of the spatial Dol of massive MIMO
B Enables WB with single-RAT small cell equipments

Challenges for joint design of small cell wireless

backhaul and cell association
B Interference management
B [oad balancing and fairness considerations

B Balancing between per-cell throughput and backhaul
constraint
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Massive MIMO IB-WB (Cont’d)

A two-tier massive MIMO IB-WB HetNet model

B [Large-scale MIMO MBS with N antennas, N single-antenna
small cells, N single-antenna MT's

B In-band wireless backhaul P
for small cells and N> N_ _

clives 7
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Joint CA-WBBA Problem

Downlink CA under SC-WB constraint

B Maximizing sum of log-rate subject to small cell wireless

backhaul constraints

B Objective chosen to balance between throughput and fairness

P1: imize RY (B, X
maél’r)linze (B, X)

subjectto x; x € {0, 1}, V(J, k) € 8¢9 x U;
ij,kzl, Yk € U;
JESO
O0<p <L
RY <cC7.Vjes.
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Relaxation and H-Decompositio

The solution approach
B Relax the binary cell association indicators to continuous

B Hiecarachical decomposition:
Upper level primal decomposition and lower level dual
decomposition

B Distributed iterative algorithm

P1.1: max%{mize Z Rj/ (X) P1.2: max/iﬁmize Ny log(l — B) + Z R;J’(X*)
jES() jES()
subjectto x;x >0, V(j, k) € 8o x U; subjectto 0 < B < 1;
Y xjx=1Vkel, RY(B:X*) — CY(B:X*) <0, €8,
J€30

R} (X; ) —C{(X; B) <0,Vj €8,
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User Rate Distribution

Empirical CDF of the user rates
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Inter-Tier Load Balancing

Inter-tier load balancing of the proposed scheme
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Sub-6GHZz v.s. mmWave

Scenario 1: Random user locations

B 3 5GHz (sub-6GHz band) and 30GHz (mmWave band)
B SBSs and users uniformly deployed within MBS coverage
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Z. Su, B. Ai, N. Wang, ¢/ a/, “User association and wireless backhaul bandwidth allocation for 5G
heterogeneous networks in the millimeter-wave band,” China Communications, vol. 15, no. 4, pp. 1-13, 2018.
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Sub-6GHz v.s. mmWave (Cont’d)

Scenario 2: Hotspot user locations

B 3 5GHz (sub-6GHz band) and 30GHz (mmWave band)
B SBSs uniformly deployed within MBS coverage

B Users distribution around hotspots (SBSs)
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How to Reduce Analog RF Cost?

Some facts

B Cost of digital processing drops much faster than the RF
B RF chains (LNA, PA, converter, ADC, DAC) are

particularly expensive and energy consuming

B Antennas are typically less expensive

Some 1deas

B Reduce the number of RF chains: Limited RF chains

B Use low-end RF hardware
Performance analysis with low-end RF hardware
Novel designs with low-end RF hardware
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1T.imited RF Chain Constraint

How to design a massive MIMO system if the
number of RF chains is limited?

B Hybnd precoding instead of pure digital precoding
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L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in massive multiuser MIMO systems,
IEEE Wireless Commmunications Letters, vol. 3, no. 6, pp. 653-6506, 2014.
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Performance of P-ZF

Using P-ZF in Rayleigh fading and mmWave

D
o

—»— FC-ZF, simulation
50 O FC-ZF, analytical
—#— PZF, simuation

¢ PZF, analytical
—&A— Quantized PZF, B = 1

e
o

Spectral Efficiency (bps/Hz)
w
o

—#— PZF

151 —A— Quantized PZF, B = 1
—%— Quantized PZF, B =2 : :
~—&— B-MIMO Preocoding [10]| F ===~ -

Spectral Efficiency (bps/Hz)

-30 -25 -20 -15 -10 -5 0
SNR (dB)

24



2Hybrid Precoding for PHY Sec

Extension to downlink hybrid precoding for joint

information and AN transmissions

yr = g, FWs + g}/ AVz +n,
y. = GLFWs + Gl AVz +n,

B P-ZF, P-MF, and phase-only conjugate data precoders
B Phase-only iterative null-space AN precoder

B [mpacts of antenna array size, number of RF chains, and
power allocation between data and AN examined

J. Zhu, W. Xu, and N. Wang, “Secure massive MIMO systems with limited RF chains,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 6, pp. 5456-5460, 2017.

25



Ergodic Secrecy Rate (bps/Hz)

Secure H-Precoding Evaluation

Evaluation of P-ZF, P-MF, and analog only
precoders for secure massive MIMO transmission
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> Impact of Hardware Impairment
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Hardware impairments in massive MIMO

J. Zhu, D. W.-K. Ng, N. Wang, ez. a/, “Analysis and design of secure massive MIMO systems in the presence
of hardware impairments,” IEEE Transactions on Wireless Commmunications, vol. 16, no. 3, pp. 2001-2016, 2017.
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*Per-Antenna CE Precoding

Use low-cost PA to achieve high performance?

Per-antenna constant envelope precoding
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N. Wang, J. Zhu, W. Xu, ez. a/, “A Note on per-antenna constant envelope precoding for large-scale multi-
user MIMO systems,” IEEE Transactions on Wireless Commmunications, manuscript under preparation, 2018.
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Per-Antenna CE Precoding (Con

Some observations with PACE precoding
B Received signal region is a doughnut channel for MISO

B Received signal regions for MU-MIMO are correlated
between users and difficult to characterize as in MISO

B MU-MIMO PACE precoding needs to be characterized
statistically by outage probability

B For secure transmission design, a phase noise channel
model 1s more appropriate (gives non-trivial bounds) than

the AWGN model, especially for eavesdropping channel

J. Zhu, N. Wang, and V. K. Bhargava “Per-antenna constant envelope precoding for secure transmission in
large-scale MISO systems,” in Proc. IEEE/CIC ICCC 2015, Shenzhen, China, Dec. 2015.
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Summary

5G 1s coming, and massive MIMO is the key enabling

technology for early stage 5G networks

Cost 1s the major concern for commercial

implementations of massive MIMO

Two cost-ettective technical approaches

Proposed a masstve MIMO enabled wireless
backhaul architecture for 5G HetNets and UDN

Design of massive MIMO with lower cost: Limited

RF chains v.s. low-cost hardware
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