Marking Criteria: Energy Modeling and Structural Analysis of Gold Clusters The competition will be evaluated based on the following detailed scoring criteria. Each team must submit a 20-page limit report summarizing their model and methodology, explaining the application scenarios and potential impact of the prediction results. All aspects of submission count toward the 20-page limit (Summary Sheet, Table of Contents, Reference List, and any Appendices) | Task 1 — Predicting
Energies of Au ₂₀
Clusters | Data Understanding and Preprocessing (8%) Correct parsing of .xyz files Detection and handling of data issues Brief statistical summary of the dataset Visualization of example structures using molecular viewers such as VMD Feature Extraction and Representation (12%) Design of meaningful structural descriptors Application of dimensionality reduction or feature selection where relevant | 30% | |---|---|-----| | | Explanation of physical relevance between selected features and energy prediction Model Construction and Evaluation (10%) Selection of suitable modeling approach with clear justification Reporting of performance metrics: MAE, RMSE, R² Discussion of model strengths and limitations | | | Task 2 — Finding and
Describing the Most
Stable Shapes | Statistical analysis of energy distribution (mean, variance, skewness) Correct identification of the lowest-energy structure Visualization of the identified structure with clear labeling Scientific description of structural features (e.g., symmetry, bond lengths, geometry) | 20% | | Task 3 — Sensitivity
Analysis via Local
Structural Perturbation | Creation of perturbed structures from the lowest-energy reference found in Problem 2 Energy predictions for perturbed structures using the model from Problem 1 Calculation of energy differences compared to the original structure (MAE, RMSE) Discussion of model sensitivity and stability with respect to local changes | 20% | | Innovation and
Creativity | Novel feature engineering or modeling approaches Unique visualization or analysis methods Original insights into energy-structure relationships or model behavior | 20% | | | • | Clarity and comprehensiveness of the one-page report summarizing the model | | |----------------|---|--|-----| | | • | Logical structure, clear writing, and accurate terminology | | | Report Quality | • | Proper integration of figures, tables, and explanations | 10% | | | • | Explicit statements of methods, assumptions, and results | | | | • | Correct citations and acknowledgments | |