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Abstract—Traffic flow prediction, which plays an impor-
tant role in intelligent traffic systems, has become a press-
ing problem to be addressed with the continuous develop-
ment of smart cities. Currently, the fundamental obstacle
lies in effectively modelling the complex spatial-temporal
dependencies present in traffic flow data. Deep learning
models such as Graph Neural Network based models and
Transformer based models have shown promising results in
this field. However, methods founded on a single model or
framework have one significant limitation: Such methods
cannot adequately represent the spatial and temporal
features of traffic flow data, restricting the model’s ability
to learn the dynamics of urban transportation. In this
paper, we propose a transformer-based spatial-temporal
graph attention network model called TSTGAT for traffic
flow prediction, which integrates Transformer and Graph
Attention Network. Experiments on two real-world traffic
datasets from the Caltrans Performance Measurement
System (PeMS) demonstrate that the proposed TSTGAT
model outperforms well-known baselines.

Index Terms—Traffic flow prediction, transformer, graph
neural network, deep learning

I. INTRODUCTION

The intellectualization of cities has been the primary

direction of development in numerous countries for

a very long time. People are therefore committed to

researching and developing intelligent transport systems

(ITS) for efficient traffic management [1]. As an integral

component of ITS, traffic flow prediction has been

implemented to predict the future flow of traffic based on

historical data observed by detectors. Predicting traffic

flow can assist in achieving efficient traffic management,

particularly on highways with high traffic volumes.

By accurately predicting flow data in advance, traffic

management departments can implement traffic control

more rationally and enhance the operational efficiency of

the highway network. Nevertheless, exploiting nonlinear

and complex spatial-temporal dependent flow data to

accurately predict traffic flow is a very difficult problem.

Time series models such as Recurrent Neural Net-

work (RNN) and Long Short-term Memory(LSTM) have

shown favourable performance in traffic flow prediction

tasks since the data are temporal dependent. However,

ignoring the spatial dependencies limits the prediction

accuracy of the model. Graph Neural Network (GNN)

based models are therefore used to capture spatial depen-

dencies of the data. To achieve higher accuracy, people

have attempted to combine LSTM, GNN and other tech-

niques such as Transformer. Despite the fact that several

studies have successfully integrated GNN and LSTM,

it remains an open problem that how to better capture

long-term dependency and spatial-temporal correlations.

In this paper, we propose a model utilizing Trans-

former and Graph Attention Network (GAT) to capture

long-term dependency and spatial-temporal features and

achieve promising results on two real-world traffic flow

datasets. The rest of the paper is organised as follows.

Section II begins with a summary of relevant works on

traffic flow prediction. Then, in Section III, we introduce

the architecture of our proposed model. Section IV

demonstrates experimental results compared to other

models. In Section V, we conclude the paper and discuss

future research.

II. RELATED WORK

To predict traffic flow, a large number of methods

comprising various models have been applied. Meth-

ods could be divided into three categories: traditional

statistical methods, classical machine learning methods

and deep learning methods. A statistical method such

as Autoregressive Integrated Moving Average model

(ARIMA) [2] can capture traffic peaks and valleys

through its obvious seasonality. As an example of

machine learning methods, Support Vector Regression

(SVR) [3] has contributed to the improvement of pre-

diction accuracy by capturing the complexity of traffic

flow data. Deep learning methods including STGCN [4],

ASTGCN [5], and PDFormer [6], have made significant

contributions to the advancement of traffic flow fore-

casting. STGCN extracts features from the spatial and

temporal domains using graph convolutional networks. It

can only be used to process data with relatively straight-

forward spatial and temporal relationships due to the fact

that it is merely based on GNN. The attention-based

design of ASTGCN compensates for the shortcomings
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of the STGCN. It is appropriate for processing data

with complex spatial-temporal relationships. Moreover,

PDFormer is a Transformer based model that employs

the graph masking method to model local geographic

domains and global semantic domains in spatial do-

mains. With the emergence of Transformer models, it

is necessary to explore the possibility of incorporating

Transformer and GNN into traffic flow prediction models

in order to enhance their precision.

III. METHODOLOGY

A traffic network could be represented as a graph

G = (V,E,A), where V = {v1, v2, . . . , vN} represent-

ing N sensors, E is a set of edges reflecting connectivity

between sensors and A is the adjacency matrix of the

network G. Each node on the traffic network G records

a set of features including total flow, average speed, and

average occupancy at each time step. We use Xt ∈ RN

to represent the traffic flow at time t. The data observed

by N sensors of historical H time steps could be denoted

as X = (Xt1 , Xt2 , . . . , XtH ) ∈ RH×N . Our purpose

is to predict future P time steps for all traffic sensors,

which is Y = (X̂tH+1
, X̂tH+2

, . . . , X̂tH+P
) ∈ RP×N .

Fig. 1. The overall architecture of the proposed TSTGAT model.

Figure 1 illustrates the framework of our proposed

TSTGAT model, which has an embedding module, a

prediction layer and two main components: spatial-

temporal blocks and GAT module. We use a 1 × 1

convolutional layer for embedding to expand the input

dimensions to improve the expression ability of the

model. Then, we extract spatial and temporal features of

the data sequentially in spatial-temporal blocks. The cor-

relation information between nodes are simultaneously

captured by the GAT module. The results of STBlock

and GAT are subsequently merged using a gated fusion

mechanism for the final predicted results.

Fig. 2. Spatial Transformer in STBlock

A. Spatial and Temporal Transformer Block (STBlock)

As shown in Fig. 1, each STBlock incorporates one

spatial and one temporal transformer module to jointly

model the spatial and temporal dependencies of traffic

networks for accurate prediction results. The input de-

noted as X ∈ RH×N×D is a 3-D tensor representing

traffic flow information with time steps H , sensors N
and features D. Normalization and residual connection

are applied for stable training and model optimization.

The spatial transformer module STN extracts spatial-

temporal features Y S through the input XS and adja-

cency matrix A. The input XT to the temporal trans-

former module TTN is generated by combining Y S

and XS , and is utilized to extract temporal features.

Stacking multiple STBlocks can increase feature ex-

pression ability, thereby better capturing spatial-temporal

dependencies and conducting accurate prediction.

Figure 2 illustrates that STN consists of Graph Con-

volutional layer, Multi-Head Attention layer and gated

fusion mechanism. Two trainable tensors spatial embed-

ding SE ∈ RN×N and temporal embedding TE ∈
RH×H are initialised and concatenated with the input

tensor in the spatial and temporal embedding layer [7].

Instead of modelling time and space separately, we em-

ploy spatial-temporal joint modelling. Through spatial-

temporal joint modeling, spatial and temporal features

can be fused together, enabling the model to better

capture spatial-temporal features, thereby improving the

predictive performance of the model. The Graph Con-

volutional layer uses GCN to learn the structural node

features of graph G [8]. Since graph G is constructed

based on the topology and fixed distances generated

by physical connectivity between sensors, GCN can

capture stationary spatial dependencies from the traffic

network. Multiple sub GCNLayers are stacked to create

the whole Graph Convolutional layer implementing the
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the propagation and aggregation of node features. A

GCNLayer H(l+1) can be expressed by:

H(l+1) = dropout
(
ReLU

(
D̃−1ÃH(l)W (l)

))
(1)

where Ã = A + I ∈ RN×N a new adjacency matrix

obtained by adding adjacency matrix A and identity

matrix I . D̃−1 ∈ RN×N is a normalized diagonal

matrix of D (degree matrix) aimed to normalize Ã.

H(l) ∈ RN×D is the hidden node features in the l-th
layer; H(0) is the input X. W (l) ∈ RD×h is a trainable

weight matrix. ReLU is used as the activation function

and dropout is used for regularization.

As the GCN model only capture the static spatial-

temporal dependencies while traffic network consists

of dynamic spatial dependencies, we apply the Multi-

Head Attention of Transformer [9] to capture dynamic

spatial-temporal dependencies that evolve over time. The

formulas could be defined as:

Attention(QS ,KS , V S) = softmax

⎛⎝QSKS√
dSk

⎞⎠V S

(2)

MultiHead(Q,K, V ) = Concat (head 1, . . . , head h)W o

(3)

where headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
.

Here, a Scaled Dot-Product Attention (2) and a Multi-

Head Attention (3) are included. In formula (2), Q is

the query vector matrix, K is the key vector matrix, V
is the value vector matrix and dk represents the vector

dimension. In the formula (3), h is the number of heads

and WO is a linear transformation of the output vector

matrix. Each head i maps the input vectors Q, K, and V
onto the corresponding subspace through an independent

linear transformation.

The architecture of temporal transformer module TTN

is similar to STN excepting two components: 1) TTN

merely conducts the temporal embedding TE, 2) TTN

drops the GCN component. The reason is that the

temporal transformer model is primarily used to model

time series, and the influence of spatial features on time

series is not significant.

B. GAT Module

The Graph Attention Network (GAT) is a typi-

cal graph neural network architecture proposed by

Veličković et al [10]. Figure 1 illustrates that the GAT

module consists of three parts which are Attention

Coefficients Calculation, Aggregation and Multi-Head

Attention. The following three Equations (4) - (6) cor-

respond to the above three parts in order:

aij = softmax

(
eij∑

k∈Ni
eik

)
(4)

h′
i =

∑
j∈Ni

aij ·Whj (5)

h′ = Concat(headk(Wk,h)) for k ∈ [1,K] (6)

In formula (4), eij = LeakyReLU(aT · [Whi ‖ Whj ])
is the raw unnormalized attention score between node i

and node j computed using a shared weight vector aT , hi

and hj are the feature representations of node i and node

j, respectively, W is a learnable weight matrix and ‖
denotes concatenation. The attention coefficient between

node i and node j is computed using the dot-product

attention mechanism. It measures the relevance of the

features of node j with respect to node i. In formula

(5), h′
i is the aggregated feature representation of node i

and W is the same learnable weight matrix used for

computing attention coefficients. This part aggregates

the neighbouring node representations by a weighted

sum. In the formula (6), headk represents the output

of the k-th attention head, Wk is a learnable weight

matrix specific to the k-th attention head and h′ is

the concatenated output of all attention heads. This

part employs multiple attention heads to capture diverse

patterns and relationships in the graph. For K attention

heads, the outputs of all heads are concatenated along

the last dimension.

IV. EXPERIMENTS

A. Datasets

We validate our model on two highway traffic datasets

which are PeMS04 and PeMS08 from California. The

traffic flow data are collected by Caltrans Performance

Measurement System (PeMS) [11] every 30 seconds

and then further aggregated into 5 minutes. There are

three kinds of traffic measurements including total flow,

average speed and average occupancy. In this study, we

use the total flow measurement from the past hour to

predict the flow for the next hour.

B. Settings

All experiments are carried on a machine with the

NVIDIA V100-32GB GPU and 72 GB memory. We

implement TSTGAT with Ubuntu 20.04, PyTorch 1.11.0

and Python 3.8. The proposed model is trained with

the mean squared error (MSE) loss using the Adam

optimizer for 5 patience with a batch size of 32. The

initial learning rate is set to 1e-4 and decays at a rate

of 0.75 for every two epochs. The feature total flow

has been selected for training and predicting in our

experiments.

C. Evaluation

We compared TSTGAT with 4 baseline models: HA,

LSTM, STGCN [4], ASTGCN [5].

• HA: Historical Average method leverages the aver-

age value of the last hour to predict the next value.
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• LSTM: Long short-term memory model is a variant

of RNN.

• STGCN: This is a spatial-temporal feature capture

model based on graph convolution network.

• ASTGCN: The method is an attention-based

spatial-temporal feature capture model, where the

spatial feature is captured by attention mechanism

through graph convolution using Chebyshev poly-

nomial as the kernel and temporal feature is cap-

tured by regular convolution.

TABLE I
AVERAGE PERFORMANCE OF MODELS ON PEMS04 AND PEMS08

Models PEMS04 PEMS08

RMSE MAE RMSE MAE

HA 57.14 39.76 48.03 33.52
LSTM 51.52 34.80 43.27 28.98
STGCN 42.37 27.63 33.87 22.35
ASTGCN 33.01 20.91 31.61 18.64
TSTGAT 32.57 20.79 29.08 17.96

Table 1 shows a comprehensive comparison among

various traffic flow prediction models. On the PEMS04

dataset, the TSTGAT model achieved remarkable results

with an impressive RMSE of 32.57 and an MAE of

20.79. Similarly, on the slightly smaller-scale PEMS08

dataset, the TSTGAT model continued to excel, achiev-

ing an RMSE of 29.08 and an MAE of 17.96, further

affirming TSTGAT’s prowess in handling traffic data

effectively. The TSTGAT model demonstrated the best

performance in terms of RMSE and MAE, highlighting

its exceptional accuracy and robust capability in the

task of traffic flow prediction. These findings demon-

strated the advantages of the novel Transformer and GAT

integration method in TSTGAT for capturing spatial-

temporal traffic patterns, predicting future traffic volume,

and making it the preferred model for tackling traffic

flow prediction challenges.

The traffic flow data is visualized in Figure 3. The fig-

ure shows the prediction results of TSTGAT, ASTGCN

and the ground truth data for the first three days (864

time steps) from the same sensor. It can be seen from

the figure that the prediction result of TSTGAT is closer

to the ground truth compared with ASTGCN, which

confirms that the proposed model is able to capture

traffic flow patterns and provide better prediction results.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a model TSTGAT that pro-

vides a novel method for the integration of Transformer

and Graph Attention Network (GAT) in traffic flow

prediction to improve urban transportation management

and decision-making. For future work, we would like to

improve our model from 2 aspects: 1) External factors

such as weather conditions, festivals and traffic accidents

Fig. 3. Traffic flow data predicted by different models

will be encoded into a data embedding layer to give more

comprehensive prediction results. 2) Propagation delay

will be processed in spatial and temporal self-attention

layers as the occurrence of an accident takes time to

impact traffic conditions in adjacent areas. By addressing

these issues, we aspire to create a comprehensive traffic

flow prediction model that demonstrates robustness in

handling complex and large-scale real-world scenarios.
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