
Time-Aware Attentional Knowledge Tracing based
on Pre-training and Feature Extraction

Yuxin Tian
School of Information Science and Engineering
East China University of Science and Technology

Shanghai, China

y80210031@mail.ecust.edu.cn

Zhanquan Wang�

School of Information Science and Engineering
East China University of Science and Technology

Shanghai, China

zhqwang@ecust.edu.cn

Abstract—Knowledge tracing (KT) has attracted increasing
attention as the level of education informatization has in-
creased. KT models students’ changing knowledge states over
time based on their historical question responding and then
forecasts students’ success in question answering. Many knowl-
edge tracing models have been proposed to support the smart
education system, but these models frequently fail to provide
good interpretability, are insufficiently extracted for question
information and frequently ignore the influence of the time
factor on prediction. To address these concerns, we propose
the Time-Aware Attentional Knowledge Tracing based on Pre-
training and Feature Extraction (PFTKT), which is implemented
in three steps: First, pre-train the question inputs to enrich
the question representation. Second, extract student attributes
to guide prediction. Finally, add time distance parameters to
the attention mechanism to model students’ forgetting behavior.
We conduct comprehensive tests on three real-world datasets
to validate the model’s effectiveness, and the results reveal that
PFTKT surpasses previous knowledge tracing models in terms
of AUC scores, and we also validate the effectiveness of each
important component of PFTKT.

Index Terms—deep learning, online learning, knowledge state,
knowledge tracing model

I. INTRODUCTION

With the rapid growth of information technology and the

rising updating of knowledge, offline education is increasingly

unable to meet people’s new expectations for lifelong learning,

which online education may answer. Online education not

only makes learning more convenient for students, but it

also opens up new potential and challenges for personalized

learning and tailored teaching. Students will face difficulties

such as selecting learning resources, fragmented learning,

and difficulty managing learning progress. Teachers are also

confronted with new challenges: it is difficult to understand

students’ needs and measure students’ learning effects quickly

[1]. To address a number of issues raised by online learning,

many researchers have proposed developing the knowledge

tracing models based on student interaction data. These models

analyze learners’ learning behaviors to determine their unique

characteristics and then provide them with individualized

interventions. Furthermore, knowledge tracing models can be

utilized to dynamically monitor learning behaviors, forecast

learning trends in real-time, and properly evaluate learning

results to provide adaptive guidance to learners [2].

In particular, the researcher first obtains the sequences of

question-answering behaviors developed by students during

the learning process, and then uses a knowledge-tracking

algorithm to model the learner and the sequence of learning

behaviors, ultimately reasoning about the learner’s skill and

cognitive level [3] [4].Finally, based on the learner’s learning

state as determined by the knowledge tracing model analysis,

multiple learning paths and individualized guidance are given

to the students, hence improving learning efficiency. Many

various types of KT models have been proposed thus far,

and the present KT models are primarily classified into three

categories. The first type of model is a probability distribution

model, such as the Hidden Markov Model (HMM) or the

Bayesian Knowledge Tracing Model (BKT) [5]. The second

group includes factor analysis methods such as Item Response

Theory (IRT) [6], Additive Factor Model (AFM) [7], and

others, which extract factors connected to students and issues

to demonstrate students’ learning behaviors. The third model

group is the most used KT, which is centered on deep sequence

models, such as the Deep Knowledge Tracing Model (DKT)

. Long Short-Term Memory Network (LSTM) [8] and Self-

Attention Knowledge Tracing Model (SAKT) [9] are attention-

based memory networks.

Since then, additional researchers have proposed models

based on the attention mechanism, and the model’s prediction

accuracy is increasing steadily. The SAKT model introduces

the attention mechanism to KT and achieves better prediction

results. Its proposal also enables researchers to see the po-

tential of the attention mechanism in the field of knowledge

tracing. Poor interpretability is a question that arises when

employing the attention mechanism, so in order to address it,

we present the Time-Aware Attentional Knowledge Tracing

based on Pre-training and Feature Extraction (PFTKT). This

model adds a time factor to the attention mechanism to imitate

students’ forgetting behavior while enriching the question rep-

resentation and extracting student attributes to aid prediction.

PFTKT improves the model’s interpretability and prediction

accuracy, and our experimental results on three real-world

datasets demonstrate that PFTKT outperforms the existing

KT model. We further test the approach’s effectiveness using

ablation experiments for each important component. Each

major component’s validity.
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The contributions of our paper can be summarized as

follows:

• Unlike other models that take the question information

directly as input, PFTKT extracts the question features

by pre-training the question information, enriching the

question representation and allowing the question matrix

to hold more auxiliary information.

• Added a student-related feature extraction module, which

extracts student personalized information such as learning

ability and then introduces the personalized features into

the decoder to drive prediction generation.

• Modified the multi-head attention mechanism by adding

the temporal distance metric parameter to the multi-head

attention, which allows the model to imitate this behavior

of students forgetting knowledge points, boosting the

model’s interpretability.

II. RELATED WORK

Assessing students’ knowledge status based on answer

records is an important aspect of KT research, with the

basic idea being to track the change in students’ knowledge

status level over time based on their learning behaviors [10].

Early knowledge transfer depended mostly on probabilistic

models that saw knowledge mastery prediction as a probabil-

ity distribution inference question of ”mastery/non-mastery,”

such as the Hidden Markov Model (HMM) and Bayesian

Knowledge Tracing Model (BKT). Hidden Markov models

may forecast the probability distribution of hidden variables

based on learners’ previous learning behaviors and depict the

transfer between states [11], allowing learners’ learning states

to be predicted.

PIECH proposed the classical Deep Knowledge Tracing

(DKT) model in 2015 [3] , which recognizes that the learner

practice sequence is a typical time series data, so it introduces

Recurrent Neural Networks (RNNs) into the KT to be able to

capture the historical correlation of the time series, and the

variants that continue to be developed based on the DKT [9]

[12] [13] [14] [15] achieved prediction accuracies far supe-

rior to other KTs. The Dynamic Key-Value Memory Model

[16] (DKVMN) is a DKT model variation that uses a key-

value memory network to uncover the relationship between

the question and the underlying talent. However, both the

DKT and the DKVMN use notions as a replacement for the

question, failing to capture the individual distinctions inherent

in the situation.To address this issue, numerous academics

have advocated using graphs to represent the relationship

between concepts and issues, leading to the development of

Graph-based Knowledge Tracing [17] (GKT), PEBG [18], and

Graph-based Interaction Modeling [19] (GIKT). GKT initially

randomly initializes a conceptual graph and then trains and

predicts it constantly to optimize it, which is computationally

hard and data-heavy. The size of the set will influence the

prediction outcomes.Based on their notions, PEBG and GIKT

define the relationship between difficulties.

Another widely used method in the field of KT is factor

analysis, which incorporates knowledge from psychology and

is designed from a cognitive diagnostic perspective, such as

Item Response Theory (IRT) [6], Attentional Factorization

Machine (AFM) [7], Performance Factors Analysis (PFA)

[20], and other models, which focus on student and question-

related factors, such as students’ learning ability and question

characteristics. Furthermore, Multidimensional Item Response

Theory (MIRT) [21] broadens the dimensions based on IRT

in order to extract more information from student interaction

data. DIRT [22] and NeuralCD [23], on the other hand,

extend IRT by incorporating deep neural networks into the

factor analysis approach, allowing the model to mine more

complex information from interaction data while retaining the

interpretability of the factor analysis approach.

Currently, the attention mechanism is widely used in the

field of KT, and models that use it have a significant gain

in prediction accuracy. The attention mechanism is more

adaptable than recurrent neural networks and memory-based

neural networks, and it performs well in natural language

processing tasks. The Self-Attentive Knowledge Tracing [9]

(SAKT) model is the first approach to use attentional mech-

anisms in KT. The SAKT model’s basic design is quite

similar to the Transformer [4] model, which is a useful

model for many sequence prediction questions. The SAINT+

[15] model extends SAKT by exploiting the whole Trans-

former to discover the hidden patterns of student interaction

sequences, and it successfully applied SOTA on the EdNet

[24] dataset. Multifactor-aware Dual Attention Knowledge

Tracing (MF-DAKT) was proposed by Zhang et al [25], which

improves question representations and uses multifactor to

explain students’ learning progress based on the dual attention

mechanism. Zhou [26] proposed personalized deep knowledge

tracing through distinguishable interaction sequences (LANA),

in which an interpretable Rasch model [27] was used to cluster

students for hierarchical learning and personalized DKT. Lee

[28] proposed Monotonic Attention-Based Knowledge Tracing

(MonaCoBERT), a BERT architecture capable of representing

monotonic convolutional multi-head attention and modeling

for student forgetting, as well as an effective embedding strat-

egy based on classical test theory to represent difficulty. The

context-aware attention model (AKT) [12] and the relationally-

aware self-attention model (RKT) [13] also use an attention

mechanism and introduce a decay function to model students’

forgetting behavior.

III. QUESTION SETUP

Knowledge tracing is a key method for achieving individ-

ualized learning [29], and many scholars have performed ex-

tensive research, practice, and investigation in order to model

knowledge tracing. The information in a learner’s learning

record primarily consists of questions, answers, correctness

or incorrectness, and time of answer in a time series. Given a

triad of learners’ time series, the knowledge tracing issue can

be characterized as predicting whether the learner answered

the question correctly or incorrectly at the i + 1 th moment.

At moment i, learners’ learning state can be characterized

as a triad of questions, concepts, and responses (qsi , csi , rsi ),
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where qsi ∈ N+ signifies the questions encountered during the

learning process and N+ denotes the number of questions.

csi ∈ N+ stands for the knowledge concepts to which the

questions are corresponding. rsi ∈{0, 1} indicates whether the

learner answered the questions properly or incorrectly. Usually,

rsi = 0 indicates a bad answer, while rsi = 1 indicates a correct

answer. The learner’s learning behavior at the time i can then

be represented by a series of triples: {(qs1, cs1, rs1), (qs2, cs2,

rs2), . . . , (qsi , csi , rsi )}. The flowchart of knowledge tracing is

shown in Fig. 1.

Fig. 1. Knowledge tracing flowchart

IV. METHODOLOGY

In this section, we introduce the PFTKT model’s major

components. Fig. 2 depicts the PFTKT model framework

diagram. The pre-training component, the student feature

extractor, and the attention mechanism based on the temporal

distance metric are the three fundamental components of the

PFTKT model. First, we pre-train the question correlations

and complexity, increasing the auxiliary information in the

question input. The student feature extractor is then used to

extract the students’ personalized features, and the personal-

ized feature parameters are supplied into the decoder to help

guide prediction generation. Finally, we describe the behavior

of students losing knowledge points using an attention mech-

anism based on a temporal distance measure.

A. Question Pre-training

We provide three question-related information: question-

related relations, concept-related relations, and question dif-

ficulty, which enable to design a question information graph,

to enrich the representation of questions so that they can carry

more information. Given that students’ answers frequently

contain multiple concepts, and that a concept frequently ap-

pears in multiple questions, we can represent the questions as

a relationship graph in which there are not only relationships

between questions and concepts, but also correlations between

concepts and implicit correlations between questions, which

have frequently been neglected in previous studies.

Unlike previous studies, we propose in this study a method

of generating Question Embedding by pre-training the infor-

mation of the questions, which allows the low-dimensional

Embedding of the questions to be better learned, and auxiliary

information, which has been neglected in previous studies,

is also included in these low-dimensional Embedding. The

auxiliary information contains the difficulty of the question

and three kinds of correlations: question-similarity informa-

tion, concept-similarity information, and question-concept cor-

relations. We use the product layer [30] to fuse the question

features, concept features, and attribute features to generate

the final Question Embedding, and the Question Embedding

generated in this manner can provide more information as in-

put, which includes not only the question difficulty information

and the correlation between questions and concepts, but also

auxiliary information about the question and concepts. The

correlation diagram between questions and concepts is shown

in Fig. 3.

1) Question-Concept Relationship Computation: In the

question-concept correlation graph, the edges between the

question vertices and concept vertices explicitly indicate the

explicit relationship between the question and the concept.

As a result, we model the explicit link by the concept’s and

question’s local proximity, namely by the inner product of the

concept and the question.

ŷij = σ(qTi cj), i ∈ [1, . . . , |Q|], j ∈ [1, . . . , |C|] (1)

where Q is the identity matrix of the question and C is the

identity matrix of the concept. A question qTi is the i th row

of matrix Q and a concept cj is the j th row of matrix C. ŷij

indicates whether there is an edge connecting the question and

the concept, and is 1 if there is one, and 0 otherwise. σ(x)
is a sigmoid function that converts the value of the question-

concept relationship into a probability. The cross-entropy loss

function is then used to train the question-concept relationship.

L1(Q,C) =

|Q|∑
i=1

|C|∑
j=1

−(yij log ŷij+(1−yij) log(1−ŷij)) (2)

2) Calculating Similarity: The question-concept correlation

graph has two types of similarity relations: similarity between

concepts and similarity between questions. We define the

neighbor set of question qi as ΓQ(i) = cj |rij = 1 and the

neighbor set of concepts cj as ΓC(j) = qi|rij = 1. Then the

question similarity can be defined as:

yqij =

{
1, ΓQ(i) ∩ ΓQ(j) �= ∅, i, j ∈ [1, . . . , |Q|];
0, otherwise.

(3)

Similarly, the concept similarity can be defined as:

ycij =

{
1, ΓC(i) ∩ ΓC(j) �= ∅, i, j ∈ [1, . . . , |C|];
0, otherwise.

(4)

In the vertex feature space, we employ the inner product

to estimate the implicit relationship between questions and

concepts.

ŷqij = σ(qTi qj), i, j ∈ [1, . . . , |Q|] (5)

ŷcij = σ(cTi cj), i, j ∈ [1, . . . , |C|] (6)
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Fig. 2. The overall model architecture of PFTKT.

Fig. 3. Question-concept relationship diagram.

Finally, we train the implicit relationships between questions

and concepts in the vertex feature space by minimizing the

cross entropy.

L2(Q) =

|Q|∑
i=1

|Q|∑
j=1

−(yqij log ŷ
q
ij + (1− yqij) log(1− ŷqij)) (7)

L3(C) =

|C|∑
i=1

|C|∑
j=1

−(ycij log ŷ
c
ij + (1− ycij) log(1− ŷcij)) (8)

3) Question Difficulty: Another crucial piece of auxiliary

information in knowledge tracing is the difficulty of the ques-

tions. It is possible to discriminate between questions that are

based on the same concept, which is important for predicting

the degree of knowledge mastery. Therefore, we introduce the

attribute of question difficulty as auxiliary information as well.

A question is typically thought to be simple to solve if many

people successfully answer it, and vice versa the question is

difficult to solve. For the question i, we use the percentage

of correct responses to indicate the difficulty of the question

(di). Since the difficulty of the question is a scalar, we convert

the question representation vector to a scalar value through a

fully connected layer:

d̂i = piWdiff (9)

where pi is the projection vector of question i and Wdiff is

the weight matrix of the fully connected layer. The error is

measured by the squared loss function:

L4(Q,C, θ) =

|Q|∑
i=1

−(di − d̂i)
2 (10)

where θ denotes all the parameters in the network layer.

4) Joint Optimization: For the generated Question Embed-

ding to retain both explicit relations, implicit relations, and

question difficulty information, we combine the above four

loss functions to form a joint training framework:

min
Q,C,θ

λ(L1(Q,C) + L2(Q) + L3(C)) + (1− λ)L4(Q,C, θ)

(11)

Where λ denotes the parameter of the trade-off between the

question-concept-related information and the question diffi-

culty information. Once the above joint training framework

is optimized, question embedding can be obtained. The com-

putational flow of the whole joint optimization framework is

shown in Fig. 4.

B. Student Feature Extractor

Previous knowledge tracing models based on the self-

attention mechanism handled student interaction data as or-

dinary time-series data and used a uniform training technique,
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Fig. 4. Pre-training joint optimization framework

which ignores the learning capacity gap across students and

reduces prediction effectiveness. In this paper, we offer a

student feature extractor that summarizes students’ inherent

features from their interaction data with questions, hence

assisting the decoder in training individualized parameters.

Our student feature extractor consists of an attention layer,

a normalization layer, and several linear layers. The attention

layer extracts student features, while the normalization and

linear layers recreate and refine the extracted student features.

The structure of the student feature extractor is shown in Fig.

5.

Fig. 5. Student feature extractor

The student feature extractor obtains the student interaction

data from the encoder and then generates feature parameters

that describe the student’s learning capacity, which in turn

can guide the decoder in predicting student responses. To

make the student feature parameters better direct the decoder’s

prediction, we construct a guidance module. The inputs to

the guidance module are the decoder output x, and the

student feature parameters θ, respectively, and the output is y.

Previously, researchers would use feedforward neural networks

to project x to y, however in our study, the projection matrix

of x will be dynamically mapped based on the student feature

parameters θ. The formula is as follows:

y = W xx+ bx,W x = W θ
1 θ + bθ1, b

x = W θ
2 θ + bθ2 (12)

The above equation can be written more simply as follows:

y = (Wθ)x+ b = GuidanceLinear(x, θ) (13)

Following the decoder, the guidance module is added to

the feedforward neural network, resulting in model prediction

guided by feature parameters. Fig. 6 depicts the internal

structure of the feedforward neural network based on the

guidance module.

Fig. 6. Internal structure of feedforward neural network based on guidance
module.

C. Time-Aware Attention

Since the self-attention mechanism was applied to knowl-

edge tracing, there has been a significant improvement in

prediction accuracy on knowledge tracing. The core of the

self-attention mechanism is the scaling dot product attention

mechanism [31]. In the scaled dot product attention mecha-

nism, each encoder and knowledge retriever has a key, query,

and value embedding layer, which maps the inputs to the

output query, key, and value with dimensions Dk, Dk, and

Dv , respectively, and processes the query, key, and value into

matrices Q, K, and V , respectively, and then applies the

Softmax function to calculate the weights, and the computed

output matrix is:

Attention(Q,K, V ) = Softmax(
(QTK)√

Dk

)V (14)

However, because learning is a dynamic process, students’

memory of knowledge will gradually decline over time, and

students constantly go through the process of memorization

and forgetting during the learning process, simply using the

scaled dot product attention mechanism cannot train a model

that fits the real situation. Furthermore, a student’s recent

performance is more indicative of his current mastery of

knowledge than his past performance, and when a learner is

faced with a new question, past experiences about irrelevant

concepts and long-ago experiences often do not help the

student solve the question. Based on the above ideas, we add

the following penalty exponential decay term to the attention

score of the scaled dot product attention mechanism:

αt,τ = Softmax(
e−θ·d(t,τ)QT

t Kτ√
Dk

)Vτ (15)
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TABLE I
DATASET STATISTICS

ASSIST2009 ASSIST2012 EdNet

Students 3840 27403 5000

Questions 15913 47109 13169

Concepts 126 263 188

Records 190335 1867158 1048576

Records per student 49.57 68.17 209.72

Concepts per question 1.21 1.00 2.28

Records per question 11.96 39.63 79.62

where Qt ∈ �
Dk×1 denotes the query corresponding to

the question answered by the student at time t, while Kτ ∈
�

Dk×1 and Vτ ∈ �Dv×1 denote the key and value of the

question at time step τ , θ is a parameter of the learnable decay

rate and d(t, τ) is the temporal distance between time steps

t and τ . When calculating the attention weights, the above

algorithm takes into account not only the similarity between

the relevant query and key, but also the temporal distance

between the current question and the previous questions. In

summary, when a current question is substantially similar to

a previous question, we will lessen the similarity in a way

that decays with time, simulating students’ memorizing and

forgetting.

V. EXPERIMENTS

In this section, we analyze the efficacy of PFTKT and

alternative baseline models using three real-world datasets, as

well as many sets of ablation experiments aimed to test the

usefulness of each important component in the PFTKT model.

A. Datasets

We use three real-world datasets to evaluate the predictive

performance of the PFTKT model and design multiple sets

of comparative tests to compare the PFTKT with numerous

state-of-the-art KT models to validate its usefulness for re-

sponse prediction. The datasets we used are ASSIST2009,

ASSIST2012, and EdNet, and the statistics of these three

datasets are shown in Table I.

• ASSISTment 2009 and ASSISTment 2012: Both datasets

were collected from the ASSISTments online tutoring

platform. For both datasets, we did some preprocessing;

we first removed records for questions that were not

labeled with concepts, and then we also removed users

who had too few answer records. After preprocessing,

the ASSIST09 dataset contains 126 concepts, 15,913

questions, and 3,840 students, for a total of 190,335

student interaction records. In contrast, the ASSIST12

dataset has 263 concepts, 47,109 questions, and 27,403

students, for a total of 1,867,158 student interaction

records.

• EdNet: This dataset was collected by [24]. EdNet is

divided into four subsets, each of which contains a

particular form of student activity. Due to the vast amount

of data in the entire dataset, in this study, we randomly

choose 1048576 data from 5000 students from the EdNet-

KT1 dataset, which contains 188 concepts and 13169

questions, with a maximum of 6 concepts contained in

one question.

B. Baselines

To validate the effectiveness of PFTKT for knowledge

tracing, we compare the model with the state-of-the-art KT

models.

• DKT: DKT is the first model to apply deep learning to

knowledge tracing, it models students’ knowledge state

and predicts future behaviors using LSTM, and students’

knowledge state in DKT is represented by hidden vectors

of LSTM.

• DKVMN: DKVMN extends DKT, which utilizes two

novel matrices, a key matrix, and a value matrix, to

store the relationship between different concepts and

each student’s mastery of the corresponding concept,

respectively.

• SAKT: SAKT is the first model to incorporate an at-

tention mechanism into knowledge tracing, it replaces

the LSTM module with a self-attention module and

outperforms the RNN-based model on several knowledge

tracing datasets.

• DSAKT: DSAKT is a knowledge tracing model that

improves on SAKT and further increases the prediction

effect of the self-attention based model on knowledge

tracing datasets.

• SAINT: The architecture of SAKT only includes one self-

attention module, but SAINT employs the complete trans-

former, which considerably improves prediction accuracy.

• SAINT+: SAINT+ is the successor to SAINT, which adds

two more features to the model input. Experiments have

demonstrated the effectiveness of SAINT+ compared to

SAINT.

• AKT: AKT monitors students’ knowledge level by em-

ploying a monotonic attention mechanism that accounts

for the human brain’s ”forgetting” habit.

• MF-DAKT: This model enriches the question representa-

tion and uses multifactorial based dual attention mecha-

nisms to model students’ learning progress.

• GIKT: It uses graph convolutional networks to capture

relationships between questions and employs a recall

module to capture long-term dependencies.

We followed the source code and work settings for all

baselines. Our model’s hyperparameter settings are as follows:

the AdamW optimizer’s learning rate is set to 5e-4, the length

of the input sequence is set to 100, and the batch size is set to

256. In our research, we use 5-fold cross-validation, with each

fold recording 20% of the interactions as the test set and the

remaining 80% of the data as the training set. In this research,

two generally used KT measures are employed for evaluation:

the AUC (area under the ROC curve) and the ACC (accuracy).

Since AUC is insensitive to the question of category imbal-

ance, utilizing AUC as the evaluation foundation is a more
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TABLE II
THE RESULTS OVER THREE DATASETS

Dataset ASSIST2009 ASSIST2012 EdNet

Metric ACC AUC ACC AUC ACC AUC

DKT 0.721 0.744 0.713 0.690 0.656 0.692

DKVMN 0.728 0.751 0.712 0.682 0.651 0.687

SAKT 0.767 0.731 0.722 0.716 0.687 0.702

DSAKT 0.798 0.749 0.731 0.737 0.664 0.685

SAINT 0.723 0.759 0.740 0.742 0.656 0.749

SAINT+ 0.733 0.752 0.736 0.744 0.694 0.756

AKT 0.754 0.802 0.735 0.738 0.705 0.731

MF-DAKT 0.793 0.807 0.733 0.750 0.705 0.761

GIKT 0.741 0.781 0.715 0.724 0.709 0.748

PFTKT 0.782 0.812 0.745 0.763 0.712 0.772

effective method when the dataset is extremely imbalanced in

classification.

C. Results and Analysis

The experimental results of various baseline KT models

as well as PFTKT on different datasets are shown in Table

II. As shown in the table, PFTKT achieves very excellent

results on the three datasets, except for not obtaining the

highest prediction accuracy in ASSIST2009, it achieves better

results than SOTA. Since AUC is more indicative of prediction

performance when the datasets are classified as imbalanced,

we take AUC to compare PFTKT and SOTA. PFTKT obtained

81.2%, 76.3%, and 77.2% AUC on the three datasets, whereas

SOTA obtained 80.7%, 75.0%, and 76.1% AUC, respectively.

PFTKT outperforms SOTA in AUC by 0.62%, 1.73%, and

1.45%, respectively.

D. Ablation Study

In this section, we design ablation experiments to test

the effectiveness of each essential component of the PFTKT

model. Three sets of ablation experiments, PFTKT-PRE (re-

move the pre-training component), PFTKT-FEATURE (re-

move the feature extractor), and PFTKT-TIME (remove the

temporal distance metric), are designed to determine whether

or not to use pre-training to generate Question Embedding,

whether or not to use the feature extractor, and whether or

not to use the temporal distance metric. The results of the

ablation experiments are compared with the original model

for comparison and the results of the ablation experiments are

shown in Table III. The table shows that PFTKT performs best

across all datasets, demonstrating that all three components of

our proposed model play a positive effect. Furthermore, we

discovered that the model’s performance degraded the most

after removing the temporal distance metric, while the model

without pre-training achieved an AUC that was second only

to the original model, indicating that the introduction of the

temporal distance metric is very effective in improving the

model’s performance, as well as that pre-training has a limited

effect on the model, and that there is still room for continued

improvement.

TABLE III
ABLATION STUDY

Dataset ASSIST2009 ASSIST2012 EdNet

Metric ACC AUC ACC AUC ACC AUC

PFTKT 0.782 0.812 0.745 0.763 0.712 0.772
PFTKT-PRE 0.767 0.801 0.744 0.759 0.706 0.765

PFTKT-FEATURE 0.770 0.792 0.729 0.755 0.698 0.761

PFTKT-TIME 0.763 0.788 0.732 0.753 0.695 0.759

VI. CONCLUSION

In this work, we proposed the Time-Aware Attentional

Knowledge Tracing based on Pre-training and Feature Extrac-

tion, which improves on three previously proposed KT models

based on attentional mechanisms. First, we constructed a

question-concept correlation graph, and then used pre-training

to build question embedding, thus enriching the representation

of the question. Second, we extracted students’ intrinsical

feature, which summarizes students’ feature parameters from

their interaction data with questions, thus helping to train

personalized models. Finally, we added a temporal distance

metric into the attention mechanism to model the behavior

of students forgetting knowledge points, boosting the model’s

interpretability as well as the model’s prediction accuracy. We

employed three real-world datasets in our tests to validate

that PFTKT outperforms the state-of-the-art, and we also

completed ablation experiments to validate the effectiveness

of each component of PFTKT. However, PFTKT currently

has certain flaws: First, in the student feature extractor, the

student’s features are not classified, which undoubtedly weak-

ens the guiding role of feature parameters in training. Second,

our research on incorporating time into the attention process

is insufficient, and we must continue to investigate the effect

of temporal elements on prediction, such as time distance and

answer time. We will continue to address these two concerns

and train better models in the future.
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