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Abstract—Recently, artificial immune algorithms have at-
tracted great attention of researchers and been widely used
in function optimization, pattern recognition and classification.
Traditional artificial immune algorithms for classification are
applied to supervised learning problems, which require com-
pletely labeled data for training models. However, in many real-
world scenarios, it is difficult to obtain all labeled samples. To
solve this problem, an efficient semi-supervised artificial immune
algorithm for classification tasks is proposed. It employs a clonal
selection algorithm to generate memory cells used for classifi-
cation, which is achieved via selection, cloning, and mutation
procedures. Moreover, it utilizes the ensemble learning technique
to extend the co-training paradigm and improves classification
performance by adding the most confident unlabeled samples
into the labeled set. In addition, the theory of learning from
noisy examples is adopted to decide whether there are enough
newly labeled samples that are used to reduce the negative effects
caused by noises. Experimental results show that the proposed
method achieves better or comparable performance than well-
known semi-supervised and supervised methods on four datasets.

Index Terms—semi-supervised learning, artificial immune sys-
tem, clonal selection algorithm, machine learning, classification

I. INTRODUCTION

In recent years, we have witnessed a proliferation of in-

formation generated from data communication, web applica-

tions, medical diagnosis and industrial manufacturing. How

to discovery and extract useful information and knowledge

has become the focus of current research. In the past ten

years, inspired by biology, many researchers have explored

the mechanism of bio-inspired algorithms and proposed var-

ious algorithms, such as Genetic Algorithm (GA), Artificial

Immune System (AIS), Ant Colony Optimization (ACO) and

Particle Swarm Optimization (PSO).

As one of the important solutions, AIS algorithms have

been widely used in the data mining and other related fields,

especially in classification. For example, artificial immune

recognition system (AIRS) [1] based on immune network the-

ory shows an effective performance on classification problems.

[2] improved the clonal selection algorithm (CSA) with the

local feature selection for classification problems. [3] used

an ensemble of AIS-based classification models to detect

mammography anomalies.

This work is supported by National Natural Science Foundation of China
(Grant No. 62102146).

However, the traditional artificial immune-based algorithms

are devised for supervised learning tasks, which require com-

pletely labeled data to train. Actually, class labels can only be

provided for a subset of the data, which may limit the per-

formance of the algorithms. To address this problem, a semi-

supervised algorithm based on artificial immune system using

clonal selection is proposed, named Semi-Clonal Selection

algorithm (SCSA). It uses a substantial quantity of unlabeled

data and a restricted amount of labeled data to improve the

performance of the classifier.

In summary, there are several contributions that have

been made: firstly, we extend traditional artificial immune

algorithms to semi-supervised learning models, which use

unlabeled samples to boost the performance of classifiers.

Secondly, we adopt the ensemble learning technique to ex-

tend the co-training paradigm, and the classifiers are refined

by using the most confident unlabeled samples. Finally, we

introduce the theory of learning from noisy examples to decide

whether there are enough newly labeled samples to ensure

performance.

The rest of the paper is organized as follows: Section II

reviews some related work. Section III discusses the SCSA

algorithm. Experiments are described in Section IV. Finally,

Section V draws some conclusions.

II. RELATED WORK

The artificial immune system and semi-supervised learning

are briefly reviewed in this section.

A. Artificial immune system

The biological immune system defends the body against

foreign pathogens using evolutionary learning mechanism,

which has complexity, robustness and adaptability. Generally,

it consists of two layers of defense mechanism. As the first-

line barrier, invading organisms are recognized and eliminated

by an unchanging mechanism in the innate immune system.

The adaptive immune system generates immunological mem-

ory. When repeated infections by the same virus are met,

it responds immediately to them. Inspired by the biological

immune system, AIS, a novel artificial intelligence technique,

consists of four immunological theories: negative selection

[4], clonal selection [5], immune networks [6] and danger

theory [7]. Many research results show that AIS is an effective

solution in optimization, pattern recognition, classification and
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medical diagnosis [8], [9]. Here, we focus on reviewing the

AIS algorithm for classification problems.

CLONALG [10] is a well-known clonal selection algorithm

and provides a solution for machine-learning and pattern-

recognition. It consists of initialization, selection, clonal

proliferation, mutation, updating and replacement. In recent

decades, variations have been developed to improve the clas-

sification performance. For example, [11] adopted a new

affinity function which maximized the classification accuracy

and minimized the misclassification accuracy in CLONALG

for classification tasks. Sharma et al. [12] introduced KNN

technique to improve the generation of memory cells. [13]

combined clonal selection and negative selection to deal with

multiclass anomaly detection.

B. Semi-supervised learning

Semi-supervised learning is a special classification method

that employs a restricted amount of labeled data and a larger

amount of unlabeled data for training. The often-used learning

methods include: generative models, graph-based methods,

self-training, co-training and transductive support vector ma-

chines [14]. In the semi-supervised generative models, Fu-

jino et al. [15] proposed a semi-supervised method for text

classification that combined naive Bayes multinomial models

with AUC optimization. In [16], a discriminative principle of

max-margin learning was employed to enhance performance

of deep generative models. The Graph-based semi-supervised

models follow the manifold assumption, where nodes are

used to represent samples, and edges are used to reflect the

similarity between samples. [17] provides systematic reviews

of them, including generalized taxonomy, valuable resources

and future research directions. [18] proposed a scalable graph-

based semi-supervised learning framework, which defined a

graph-based sparse prior to create the sparse Bayesian mode

and introduced incremental learning technology to deal with

large-scale datasets. Lee et al. [19] combined graph construc-

tion with cutting label propagation to reduce the influence of

noises on the performance.

Self-training and Co-training are other popular semi-

supervised algorithms, and have been applied in a variety

of fields, such as pattern recognition [20], sentiment analysis

[21] and fault diagnosis [22]. In addition, transductive support

vector machines [23] have also become the research hotspot,

which assign labels for unlabeled samples based on clustering

assumptions and use iteratively local search to obtain the

optimal solution. Gu et al. [24] extended Semi-Supervised

Support Vector Machine (S3VM) [25] by employing a new

incremental strategy into large-scale applications. Chen et al.

[26] combined transductive support vector machines with an

infinitesimal annealing algorithm to decrease the risk of falling

into a local optimum. Moreover, they introduced incremental

learning to reduce the training time.

III. THE PROPOSED SEMI-CLONAL SELECTION

ALGORITHM

Inspired by [27], [28], we propose a new semi-supervised

learning algorithm based on the clonal selection algorithm.

It exploits unlabeled samples to boost the performance of

classifiers and employs the theory of learning from noisy

examples to decide whether there are enough newly labeled

samples to ensure performance. In this section, we describe

definition, the analysis of the stop condition, and a system

framework of the SCSA algorithm.

A. Definition

Definition 1: Antigens
Antigens: Antigens include a set of training samples, de-

noted by

ag = {ag(i)|ag(i) = (xi, yi), xi ∈ Rd, yi ∈ [φ, 1, .., C]} (1)

where xi represents a d-dimensional feature vector, yi rep-

resents its class label, and C is the total number of classes.

When ag(i) is an unlabeled sample, yi is set to φ.

Definition 2: Antibodies
Antibodies: Antibodies represent the common features of

the training samples for each class.

ab = {ab(i)|ab(i) = (xi, yi), xi ∈ Rd, yi ∈ [1, .., C]} (2)

Definition 3: Ensemble of CSA
H∗ denotes an ensemble of CSA-based classifiers with fixed

size M . The symbol hi (i = 1, 2, ...,M) represents the ith
component classifier of H∗, and its concomitant ensemble is

denoted by Hi, which contains all the component classifiers

of H∗ except hi.

B. Analysis of the stop condition

Some studies [29] found that the mitigation of the adverse

impact caused by noise can be achieved through the augmenta-

tion of the labeled set by incorporating enough newly labeled

samples under specific circumstances. Moreover, [30] gives a

relation between the worst-case error rate of hypothesis (ε),
the noise rate (η) and the training sample size (m).

m =
c

ε2(1− 2η)
2 (3)

The variable c is a constant. If the equation is satisfied, then

the learned hypothesis hi will minimize the disagreement on

training examples affected by noise and converge to the true

hypothesis h∗ with probability one.

By reforming formula (3), the following equation can be

obtained.

c

ε2
= m(1− 2η)

2
(4)

The noise rate in the tth learning iteration is calculated using

the following formula.

ηi,t =
η0W0 + êi,tWi,t

W0 +Wi,t
(5)
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where η0 is the noise rate of initial hypothesis on the original

labeled training set L, W0 is the total predictive confidence of

the set L, êi,t is the out-of-bag error rate of its concomitant

ensemble Hi on the newly labeled set Li,t, and Wi,t is the

total predictive confidence of the set Li,t estimated by Hi.

Then, formula (4) can be written as formula (6) by substi-

tuting η and m with ηi,t and mi,t.

c

ε2
= (W0 +Wi,t)(1− 2

η0W0 + êi,tWi,t

W0 +Wi,t
)2 (6)

where the size of augmented training set mi,t equals to W0+
Wi,t.

It can be seen from the formula (6) that the squared

worst-case error rate ε2 is inversely proportional to the right

hand side of formula. To decrease the error rate during each

iteration, the following condition should be satisfied.

Wi,t > Wi,t−1 and êi,tWi,t < êi,t−1Wi,t−1 (7)

More details are presented in [27].

C. The framework of semi-clonal selection algorithm

In SCSA, the training set consists of the labeled set L and

the unlabeled set U . The set L is used to train the initial CSA-

based classifiers, and these classifiers are improved by using

the newly labeled set Li,t whose class labels are decided by

corresponding concomitant ensemble. Here, in order to achieve

excellent prediction performance of the ensemble, we use

Bagging technique and inherent characteristic of CSA to keep

the diversity of component classifiers. Specifically, bootstrap

sampling are employed to generate a differently labeled set

Li for each CSA classifier. On the other hand, CSA classifiers

have the stochastic characteristic in the antibody generation.

The general framework and the pseudocode are shown

in Fig.1 and Algorithm 1, respectively. First, we use the

bootstrap sample method to generate the training set Li and the

estimation set Ei (see line 11). Then, each CSA classifier in

the ensemble H∗ is initiated from the bootstrap sample dataset

Li (see line 12). In the improvement process, we estimate error

rate ei,t of the concomitant ensemble Hi on the estimation set

Ei. If error rate is reduced in each iteration and condition (7) is

met, then the CSA classifier hi is refined with most confident

unlabeled samples selected by Hi. Here, we adopt incremental

technology to update the CSA classifier. Each newly sample is

sequentially presented to the antibodies in the CSA classifier,

instead of rebuilding hi; When none of CSA classifiers have

been updated, we obtain the final training model H∗ (see lines

15-36).

D. Several key implementation details in CSA

The primary steps of improved CSA are briefly discussed

below.

Initialization: An antibody pool M with fixed size N
consists of Nc memory antibody subpool M{mc}, which is

generated by randomly added antigens belonging to the class

c. Nc is the number of classes of antigens. The size of M{mc}

Algorithm 1 SCSA Algorithm

Input: training set T ,

confidence threshold θ,

ensemble size Nc

Output: predicted label hfin(x) of x
1: set L = φ, U = φ
2: for each example (xt, yt) in the training set T do
3: if yt = φ then
4: U = U ∪ (xt, yt)
5: else
6: L = L ∪ (xt, yt)
7: end if
8: end for
9: for i ∈ {1, 2, ..., Nc} do

10: set ei,0 = 0.5,Wi,0 = 0
11: (Li, Ei) = BootstrapSample(L,Nc)
12: hi = BuildCSA(Li)
13: end for
14: t = 1
15: repeat
16: for each CSA classifier hi do
17: ei,t = MeasureErr(Hi, Ei)
18: set Li,t = L
19: if (ei,t < ei,t−1) then
20: Ui,t = SubSampled(U,

ei,t−1Wi,t−1

ei,t
)

21: for each xu ∈ Ui,t do
22: if (GetConfidence(Hi, xu) > θ) then
23: Li,t = Li,t ∪ (xu, Hi(xu))
24: Wi,t = Wi,t +GetConfidence(Hi, xu)
25: end if
26: end for
27: end if
28: end for
29: for each CSA classifier hi do
30: if (ei,tWi,t < ei,t−1Wi,t−1) then
31: hi = UpdateCSA(Li,t)
32: end if
33: end for
34: t = t+ 1
35: until none of the classifiers in the ensemble changes

36: return hfin(x) = argmax
y∈Y

∑
M
t=1I (ht(x) = y)

is proportional to the number of the antigens with class c in

the training set, which is computed as following.

Nmc
=

|Agc|
∑Nc

c=1|Ag| ∗N (8)

Selection and Exposure: Select an antigen at random, and

present it to the antibody pool Mc that has the same class with

the antigen. Then calculate an affinity value of each antibody

in Mc against the antigen. Here, the affinity function relies on

Euclidean distance and remains within the range of [0, 1].

affinity =
1

(1 + dist(ag, ab))
(9)
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Fig. 1. The general framework of SCSA

Clone and affinity maturation: The n antibodies with the

highest affinities in M{mc} are selected and cloned propor-

tionally to their affinities. Then, the clones are subjected to an

affinity maturation process which adopts Gaussian mutations

operator.

Clone Exposure: After exposing the mutated antibodies to

the antigen, their affinity values are computed.

Update antibody pool: Select the matured clone with the

highest affinity as a candidate. If the affinity value is higher

than that of the highest stimulated antibody in M{mc}, then

the candidate will replace it. In addition, the r antibodies

with the lowest affinities will be replaced with new antibodies

generated at random.

If there is no affinity improvement in t successive iterations

or the average affinity value of M{mc} is no less than a

predefined threshold σ, then the stopping criterion of the above

process is reached.

IV. EXPERIMENTAL RESULTS

In this section, we aim to provide evidence that the perfor-

mance of the SCSA classifier can be improved by using the

unlabeled examples, and then compare the proposed algorithm

with several state-of-the-art semi-supervised and supervised

classification methods on benchmark datasets.

A. Experimental setup

The comparison methods include MPSVM [31], KNN-

WDM [32], CLONALG [10], CSCA [11], AIRS1 [1], AIRS2

[33], KNN and SVM. The first two methods are both semi-

supervised algorithms. MPSVM is based on the transductive

support vector machines, a nonparallel proximal classifier was

built by using geometric information, and particle swarm

optimization was employed to optimize parameters. KNN-

WDM is a weighted distance-based KNN classifier, which

used the information of labeled training and unlabeled samples

to form a metric space. CLONALG, CSCA, AIRS1, AIRS2

are immune-based supervised algorithms. The Gaussian kernel

is used in the SVM classifier. The kernel width of SVM and

the parameter k in KNN are tuned by 10-fold cross validation

strategy.

The SCSA is developed in the python software, the param-

eter values of the ensemble size, antibody population size,

selection pool size, replacement size in the antibody pool,

and maximum number of successive iterations without affinity

improvement T is set to 10, 150, 10, 10% and 10, respectively.

Other comparison methods use suggested parameters in the

original literatures.

In addition, four well-known datasets are employed, of

which the detail is shown is Table I. RandomRBF is a synthetic

dataset generated by the MOA tool [34]. All the attribute

values of samples are normalized to the interval [0, 1]. Because

MPSVM is a binary classifier, the samples for target classes

2 with target classes 3 are merged in the Wine dataset. The

experiments are conducted using 10-fold cross validation,

where a dataset is randomly divided into ten folds. Nine folds

are used as training data, and the rest one is used as test data.

For the semi-supervised methods, the training data T includes

a labeled set L and an unlabeled set U , where U is equal to the

unlabeled rate μ multiplied by T . For the supervised methods,

all training samples are given class labels. In addition, the

experiments are repeated 10 times for each dataset.

TABLE I
THE DETAIL OF SYNTHETIC DATASETS

dataset instances features classes

Sonar 208 60 2
Ionosphere 351 34 2
Wine 178 13 3
RandomRBF 200 10 2
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B. The performance affected by the unlabeled rate
Figure 1 shows the complete trend of the average accuracy

rate affected by the unlabeled rate μ varying from 0.1 to 0.9 on

the RandomRBF dataset. The original SCSA is only learned

from the labeled set L in the set T , while SCSA uses both the

labeled set L and the unlabeled set U . From the figure, we

observe that the curve of the SCSA is obviously higher than

that of the original SCSA in most cases. The curve of the

SCSA almost coincides with that of the original SCSA when

the unlabeled rate decreases from 0.9 to 0.8. It shows that the

accuracy of the SCSA can be increased by using the unlabeled

samples except for the high unlabeled rate. The reason is that

when the labeled set L is too small, there is not enough labeled

samples to build reliable classifiers. These classifiers are more

likely to assign the wrong labels to unlabeled samples, thereby

degrading the performance of the refined classifiers.
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Fig. 2. The accuracy of SCSA and original SCSA over different unlabeled
rates μ in the RandomRBF dataset

C. Comparison with semi-supervised methods
The average accuracy rates of the semi-supervised algo-

rithms with different unlabeled rates are shown in Table II. We

can see from the tables that the average performance of the

compared algorithms is improved as the ratio of labeled data

increases. For instances, the accuracy of SCSA is improved

more than 5% when the unlabeled rate decreases from 0.4

to 0.2 on the RandomRBF dataset. Moreover, SCSA achieves

remarkable or comparable performance to MPSVM and KNN-

WDM on most databases. For example, when 40% samples

are unlabeled, SCSA outperforms KNN-WDM on three out

of four datasets. When 20% samples are unlabeled, SCSA

has higher accuracy than KNN-WDM and reaches higher or

comparable accuracy to MPSVM on all the datasets. This is

because that SCSA adopts the ensemble learning technique to

keep the diversity and labels samples by using the concomitant

ensemble to avoid bias and overfit.

D. Comparison with supervised methods
Figure 3 and Figure 4 show the accuracy of the SCSA

compared with popular supervised algorithms. We observe

TABLE II
THE AVERAGE ACCURACY RATES OF SEMI-SUPERVISED ALGORITHMS

WITH DIFFERENT UNLABELED RATES μ

dataset μ MPSVM (%) KNN-WDM (%) SCSA (%)

Sonar

0.8 74.08 63.69 67.14
0.6 79.35 72.39 79.05
0.4 82.68 82.68 82.54
0.2 82.23 83.19 83.33

Ionosphere

0.8 86.06 87.19 86.52
0.6 88.19 89.30 88.90
0.4 93.58 89.44 91.87
0.2 93.87 91.73 92.56

Wine

0.8 94.92 88.65 97.22
0.6 94.10 92.12 95.37
0.4 95.77 91.83 97.22
0.2 93.55 91.00 98.15

RandomRBF

0.8 81.50 69.67 60.00
0.6 82.00 80.33 82.00
0.4 84.00 80.92 85.00
0.2 84.50 80.42 90.00

that the performance of SCSA with certain unlabeled rates is

better than some of the supervised algorithms using the whole

training labeled set T . For instances, when 40% samples are

unlabeled, the average accuracy of SCSA is higher than that

of CLONALG and KNN on the Ionosphere dataset. When

20% samples are unlabeled, SCSA outperforms CSCA on

both Ionosphere and Sonar datasets, and reaches comparable

performance with AIRS1 and AIRS2 on the Sonar dataset.
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Fig. 3. The accuracy rates in the Ionosphere dataset

V. CONCLUSIONS

Most artificial immune-based algorithms are devised for su-

pervised learning tasks, which require completely labeled data

to train. To address this issue, we propose a semi-supervised

algorithm based on CSA, named Semi-Clonal Selection al-

gorithm (SCSA). Unlike most conventional artificial immune
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Fig. 4. The accuracy rates in the Sonar dataset

algorithms, it adopts the ensemble learning technique to further

develop the co-training method and estimate the confidence

of unlabeled data. Then, the classifiers are refined by using

the newly labeled samples. Finally, we introduce the theory

of learning from noisy examples to decide whether there

are enough newly labeled samples to ensure performance.

Experiments indicate that unlabeled samples can substantially

improve the performance of SCSA. Meanwhile, compared

with the state-of-the-art semi-supervised and supervised clas-

sification algorithms, it achieves remarkable or comparable

performance in most datasets. In the next phase of work, we

will investigate the influence of the varying levels of noise

on the algorithm’s robustness and use incremental learning to

extend our method into time-varying data streams. We also

explore how to apply our proposed framework into anomaly

detection over data streams.
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