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Abstract—Despite extensive research, remote sensing image
classification remains a challenging issue within the field of
remote sensing image analysis. Achieving a balance between
classification accuracy and computational efficiency remains
challenging, as traditional methods often face difficulties in
attaining both high speed and precision simultaneously. To
tackle this dilemma, we propose a method named IMVR which
significantly reduces the computational burden while maintaining
validity. This method enhances the richness and accuracy of
high-dimensional feature representations through its output.
Extensive experiments are conducted on the UC Merced Land-
Use Dataset to demonstrate that our method can substantially
improve classification performance and efficiency in comparison
to traditional methods.

Index Terms—Feature classification, image classification, deep
learning, Remote sensing image classification

I. INTRODUCTION

Remote sensing image classification plays a crucial role in

analysing remote sensing images, enabling accurate identifica-

tion and classification of different feature categories in these

images. It has significant implications in various fields, such

as environmental monitoring, urban planning, and agricultural

management. With the continuous advancement of satellite

technology, remote sensing images’ acquisition and processing

capabilities have been greatly improved [1]. Satellites now

provide higher spatial resolution, which means that they can

capture more detailed surface information. In addition, the

availability of multispectral and hyperspectral sensors makes

it possible to capture images in multiple bands, allowing

for more comprehensive and precise information extraction

We sincerely thank the Climatic Data Centre, part of the National Mete-
orological Information Centre (CMA Meteorological Data Centre), for their
invaluable assistance and cooperation in providing us with the meteorological
data used in this study.

Advances in image processing algorithms and techniques have

enabled more efficient and accurate extraction of valuable

information from remotely sensed images.

Remote sensing image classification involves the task of

assigning predefined labels to pixels or regions in a remote

sensing image based on their spectral, spatial, and contextual

characteristics. The goal is to accurately classify different land

cover types or objects present in the image. This task is

challenging due to the complexity and variability of remote

sensing data, including variations in illumination, scale, and

spatial distribution [2].

Traditionally, remote sensing image classification methods

have been categorized into three main approaches based on the

level of visual features used: low-level, mid-level, and deep

learning-based methods.

Low-level visual feature-based methods focus on extracting

features from the low-level visual attributes of high-resolution

remote sensing images. Commonly used methods include

color histograms [3] and scale-invariant feature transform

[4]. These traditional methods demonstrate good classification

performance for high-resolution remote sensing images with

uniform spatial distribution and structural patterns. However,

they often fail to perform well in scenes with non-uniform

spatial distribution.

Mid-level visual representation-based methods aim to en-

code the low-level local visual features of high-resolution

remote sensing images to form a global feature representation

of the scene. Common encoding models include bag-of-visual-

words [5], spatial pyramid matching [6], local constrained

linear coding [7], probabilistic latent semantic analysis [8].

Compared to low-level visual feature-based methods, mid-

level visual representation-based methods have Mid-level vi-

sual representation-based methods aim to encode the low-level
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local visual features of high-resolution remote sensing images

to form a global feature representation of the scene. Common

encoding models include bag-of-visual-words [5], spatial pyra-

mid matching [6], local constrained linear coding [7], prob-

abilistic latent semantic analysis [8]. Compared to low-level

visual feature-based methods, mid-level visual representation-

based methods have shown significant improvements in clas-

sification accuracy. However, they are still limited by the low-

level visual features and encoding methods, which prevent

them from achieving optimal classification performance and

classification accuracy.
In recent years, deep learning-based methods have attracted

extensive attention due to their remarkable achievements

across various fields. These methods utilize deep neural net-

works to automatically learn image features and improve clas-

sification performance. Commonly used deep learning models

for remote sensing image classification include convolutional

neural networks (CNNs), recurrent neural networks (RNNs),

and autoencoders. Subsequently, ResNet-50, a CNN with skip

connections, has proven highly effective for computer vision

tasks [9]. Additionally, Inception V3 improves the neural net-

work structure by decomposing the original large convolution

kernel into small convolution kernels with equivalent opera-

tions [10], performing spatial decomposition of asymmetric

convolution, and using auxiliary filters while further reducing

the feature map and computation amount. This enables more

effective preservation of image features, extracting remote

sensing image features well while maintaining excellent train-

ing speed. These methods have achieved remarkable success in

classifying high-resolution remote sensing images, effectively

handling complex spatial distribution and structural patterns,

and improving classification accuracy and robustness.
In this paper, we propose the IMVR model, which integrates

the respective advantages of Inception, MobileNet, VGG,

and ResNet50 through transfer learning. Transfer learning is

utilized to perform initial preprocessing on the large natural

image dataset ImageNet. To evaluate the performance of the

proposed method, we compare IMVR against previous clas-

sical models using large benchmark datasets. The ensemble

model harnessing the strengths of specialized neural networks

demonstrates advanced performance for remote sensing image

classification. The critical contributions of this work are as

follows:

1. A new remote sensing image classification neural net-

work is proposed, IMVR, which demonstrates improved

performance compared to traditional remote sensing clas-

sification methods.

2. The model can monitor specific characteristics of a given

area in real-time, enabling supervisors and decision-

makers to obtain the latest information in real-time to

make more informed decisions.

3. This work advances interdisciplinary research across ma-

chine learning, geography, climate science, etc., opening

avenues for applying the proposed techniques in diverse

fields such as geography and pollutant distribution anal-

ysis.

II. METHODOLOGY

A. Basic models

1) Inception v3: Inception V3 has optimised the structure

of the Inception Module, and there are now more varieties

of Inception Modules as shown below, and the practice of

splitting a larger two-dimensional convolution into two smaller

one-dimensional convolutions has also been introduced in

Inception V3 [11]. For example, a 7 × 7 convolution can be

split into a 1 × 7 convolution and a 7 × l convolution. This

kind of asymmetric convolutional structure splitting is better

than symmetric convolutional structure splitting in terms

of handling more and richer spatial features and increasing

feature diversity, and at the same time, it can reduce the

amount of computation.

2) Resnet50: The ResNet-50 [12] network structure com-

prises two fundamental blocks: the Conv Block and the

Identity Block, with a total of four blocks in this connection

module. The complete model is depicted below.

Fig. 1. ResNet50 Module [12]:From stage1-stage3 there will be two kinds of
Bottleneck, two kinds of Bottleneck corresponds to two kinds of situations:
the same number of input and output channels (BTNK2), the number of input
and output channels are different (BTNK1), stage1 first use BTNK1 and then
add two BTNK2, stage2 use a BTNK1 and then add three BTNK2, stage3
use BTNK1 and then add two BTNK2, stage4 use BTNK1 and then add five
BTNK2

3) Mobilenet: Mobilenet replaces ordinary convolution

with deep separable convolution [13], the convolution for-

mula for deep convolution is as Eq.1. In Eq.1, Output(i, j)
denotes the value of the output feature map at position (i, j),
Input(i+m, j+n, k) denotes the value of the input feature map

at position (i+m, j +n) and channel k, and Kernel(m,n, k)
denotes the value of the convolution kernel at position(m,n).
In Eq.1, the variables of channel k, M , N and K denote

the height, width and number of channels of the convolution

kernel, respectively.

Output(i, j) =
M∑

m=1

N∑

n=1

K∑

k=1

Input(i+m, j+n, k)×Kernel(m,n, k)

(1)

The computation of depth separable convolution is also

composed of two parts: the convolution kernel size of depth

convolution is Dk ∗ Dk ∗ M , and a total of Dw ∗ Dh

multiplication and addition operations have to be done;

the convolution kernel size of point-by-point convolution is

1 ∗ 1 ∗M , and there are N of them, and a total of Dw ∗Dh

multiplication and addition operations have to be done so
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that the calculation amount of depth separable convolution is:

DK ∗DK ∗M ∗Dw ∗Dh +M ∗N ∗Dw ∗Dh.

4) VGG: In VGG [14](Visual Geometry Group), three 3x3

convolutional kernels are used instead of the 7x7 convolutional

kernels in AlexNet [15], and two 3x3 convolutional kernels are

used instead of the 5*5 convolutional kernels, and the main

purpose of this is to enhance the depth of the network under

the condition of ensuring that it has the same perceptual field,

which enhances the effect of neural network to some extent.

B. IMVR

We chose four classical CNN models as feature extractors,

NASNetMobile, ResNet50, VGG16, and InceptionV3. These

models were pre-trained on ImageNet on large-scale datasets

and have good feature extraction capabilities. We constructed

classifiers by concatenating their outputs and adding a fully

connected layer and softmax layer. During training, we used

data enhancement and preprocessing techniques, including

operations such as image rotation, translation, cropping,

scaling and horizontal flipping to increase the diversity and

generalisation of the training data. According to the transfer

learning technique, the pre-trained model weights are frozen,

and only the classifier weights are updated.

Fig. 2. IMVR:Firstly, the 256*256 remote image data will be pre-processed
and passed into the pre-trained Resnet50, Inception v3, Mobilenet and Vgg16,
respectively, and extracted to 1*256 high-dimensional features by GlobalAv-
eragePooling2D and Dense to concatenate the high-dimensional features of
the four models, and then carry out the multi-classification task of 21 classes
by Dense.

1) Transfer Learning: Transfer learning [16] can effectively

solve the information silo problem by transferring effective

information from the original domain to improve the learning

and training efficiency of another domain (target domain),

which can effectively solve the information silo problem.

Using the powerful functions of deep neural networks and

imagenet datasets, the knowledge learnt from natural image

processing models applicable to large data volumes can be

transferred to remote sensing image datasets applicable to

small data volumes to achieve effective migration.

Fig. 3. Transfer Learning: the target network is trained with ImageNet
parameters in the original domain, the corresponding parameters are frozen
after training, and remote sensing images are passed into the already pre-
trained model in the target domain for the multi-classification task .

2) Convolutional neural network: Convolutional neural

networks have the ability of representation learning, able to

shift-invariant classification of the input information according

to its hierarchical structure, convolutional layer, there are two

key operations, local correlation and window sliding, each con-

volutional neuron serves as a filter through the corresponding

parameter to carry out the sliding to carry out the calculation

of the local data, to get the high-dimensional features of the

image.

The full for convolution is:

z(u, v) =
∞∑

i=−∞

∞∑
j=−∞

xi,j · ku−i,v−j (2)

The defining equation for the convolution is:

z(u, v) =

∞∑
i=−∞

∞∑
j=−∞

xi+u,j+v · kroti,j · χ(i, j) (3)

χ(i, j) =

{
1, 0 � i, j � n

0, others
(4)

Backpropagation calculates the residuals (error term) for

gradient descent: The detailed derivation of backpropagation

is in Eqs. 5-7.

3) Concatenate: Our model chose to use Concatenate to

extract high-dimensional features as this retains more infor-

mation. Cascading would connect the outputs of the model

sequentially to form a longer feature vector, which would lose

the information interaction between the models. Concatenate

helps to improve the expressiveness and generalisation of the

model. And it can be more flexible to concatenate in different

dimensions without the limitation of dimension matching,

which provides more flexibility and freedom.

III. EXPERIMENTS

A. Dataset Description

The UC Merced Land-Use Dataset [17] used in this paper

is a 21-class remote sensing dataset of land-use imagery for

research purposes, with a total of 100 classes of imagery

extracted from the USGS National Map Urban Area Imagery

series, which is used in urban areas across the country. This

dataset of public domain images has a pixel resolution of 1 ft,

an image pixel size of 256*256, and contains a total of 2100

scene images in 21 classes, of which 100 are in each class.
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B. Evaluation Methods

The choice of accuracy rate as the evaluation criterion rate

is one of the most intuitive and commonly used evaluation

metrics, which provides a simple measure of how correct the

model is in its predictions. The accuracy rate can intuitively

reflect the model’s prediction accuracy, i.e., the proportion of

correctly predicted samples. Calculating the accuracy rate is

very simple, need to count the number of correctly predicted

samples and the total number of samples.

The accuracy rate is very widely used: accuracy rate is one

of the most commonly used evaluation metrics in machine

learning and deep learning and is widely used in various tasks

and fields.

C. Remote Sensing Image Recognition

1) Preprocessing: The raw data is first normalised by

scaling the image’s pixel values to between 0 and 1 by dividing

the pixel values by 255. It is convenient for model training

and optimisation to unify the pixel values of the image into a

smaller range. The data enhancement is carried out randomly

by rotating the image by a certain range of angles can increase

the diversity of data so that the model has a certain degree of

invariance for different angles of the image, and then randomly

translating the position of the image can simulate the changes

of the image under different positions, increase the diversity

of data, and improve the generalisation ability of the model.

2) Trend analysis: Vgg’s Validation Accuracy does trend

upwards along with the Train Accuracy trend, but the climb

is slow. Resnet50 Validation Accuracy does not compare well

with the Train Accuracy trend and remains low, mobilenet

Validation Accuracy and Train Accuracy trends are both

increasing but with low initial accuracy, and inceptionV3 Vali-

dation Accuracy and Train Accuracy trends are both increasing

but with low initial accuracy. The inceptionV3 Validation

Accuracy and Train Accuracy trends are both increasing, but

the initial accuracy is low and fluctuates greatly.

IMVR validation Accuracy and Train Accuracy trends are

both increasing, with high initial accuracy of 0.85 and little

fluctuation.

IV. RESULT AND DISCUSSION

According to the 100 epoch training accuracy graph com-

parison can be seen that 10 epoch has reached the optimal

Fig. 4. Training results of 10 epochs

value of the model. To prevent overfitting, choose to use 10

epoch accuracy comparison.

Fig. 5. IMVR:Training perfor-
mance of 100 epochs

Fig. 6. Mobilenet:Training perfor-
mance of 100 epochs

The main results are shown in Table 2. From the table,

it can be seen that IMVR successfully outperforms other

methods with a test accuracy of 44.52% over Vgg, 17.14%

over Mobilenet, and 19.05% over Inception, which is strong

proof of the effectiveness of our proposed method. From

the performance comparison based on Mobilenet and Resnet,

it can be concluded with certainty that different effective

features can be extracted from different models, and more

high dimensional features can be extracted from the fusion

of multiple models, which can be used to judge the cate-

gories more accurately in classification. And IMVR has higher

accuracy in the same epoch through the comparison graph

of accuracy, which indicates that the advantage of IMVR in

training efficiency is obvious.
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The computational setup utilized for this analysis consisted

of CPU 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz

2.30 GHz. Consequently, hardware limitations may exist when

attempting to optimize model parameters further. With more

advanced hardware devices and larger data availability, clearer

and more precise classification results can be achieved.

TABLE I
EXPERIMENT RESULT

test loss test accuracy
Vgg 1.5709 0.4786

Inception V3 1.2600 0.7333
MobileNet 1.2020 0.7524

Our Approach 0.2314 0.9238

V. CONCLUSION

In this thesis, we propose an integrated model-based ap-

proach. In order to improve the training efficiency, we applied

migration learning to pre-train on Imagenet large dataset.

Compared with the classical deep learning model alone, the

accuracy was chosen as the evaluation criterion for the test.

Experimental results are demonstrated with comparisons of the

performance, i.e., accuracy.

Comparison results on the UC Merced land use dataset

show that our method successfully outperforms other indi-

vidual methods on remote sensing classification tasks and

outperforms other models in terms of training efficiency.

However, there are some limitations to this study, firstly

the choice of a single evaluation criterion may have some

evaluation error and the choice of a single dataset may limit

the ability to generalise the results. In the future, we will

test our method b on other benchmark datasets to evaluate

its performance in remote sensing classification tasks.
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