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Abstract—Time series forecasting finds numerous applications
in real-world scenarios such as finance, healthcare, and weather
prediction. However, a significant portion of real-world time
series data exhibits non-stationarity. While some methods like
Prophet and STL can decompose non-stationary time series due
to seasonality and periodicity for accurate predictions, they may
falter when faced with unforeseeable factors, such as structural
breaks induced by government interventions in exchange rates.
This study asserts that non-stationary time series can be seg-
mented into multiple stationary segments via change points,
and these segments may possess latent temporal characteristics.
By employing change point detection algorithms to identify
non-stationary features, these features can be incorporated into
prediction models. The proposed GRU-CP model is introduced
in this context. Compared to traditional models, GRU-CP yields
lower errors when forecasting time series data.

Index Terms—Time Series Forecasting; Change Point Detection;
Non-stationarity; Gated Recurrent Unit

I. INTRODUCTION

Time series forecasting (TSF) finds increasing applications

across industries, including finance [1], weather [2], energy

consumption [3], healthcare [4] and so on. In finance, TSF is

used to predict stock prices and exchange rates, and in sales

to forecast product demand and optimize supply chains [1].

Weather uses TSF to predict weather patterns [2], while in

energy consumption, it assists in efficient resource planning

and load balancing [3]. Additionally, TSF is applied to predict

healthcare, it aids in predicting patient admissions and disease

outbreaks for resource planning [4]. As data availability and

machine learning advancements grow, the accuracy and ver-

satility of TSF continue to improve, benefiting diverse sectors

with informed insights for planning and resource allocation.

TSF methods can be broadly classified into two categories:

statistical methods and deep learning methods. Statistical

methods include Autoregressive Integrated Moving Average

(ARIMA) [5] for stationary and seasonally-driven data, Expo-

nential Smoothing (ES) [6] for capturing trend and seasonality

patterns, and Seasonal Decomposition of Time Series (STL)

[7] for component-wise analysis. Additionally, Prophet [8] is

a robust additive model suited for business applications.

What’s more, deep learning methods such as Long Short-

Term Memory (LSTM) [9] and Gated Recurrent Unit (GRU)

[10] are effective in handling complex temporal dependencies

and long-range interactions in sequential data. The success of

Transformer [11] in the domain of natural language processing

has led to its widespread adoption in TSF, owing to its versatile

applications and promising performance in handling sequential

data.

In the natural world, time series data often tends to be

non-stationary rather than stationary. Many real-world time

series, including weather patterns, economic indicators, and

biological processes, exhibit trends, seasonality, and other non-

stationary patterns [7]. Analyzing and forecasting such time

series data often requires special methods that can handle non-

stationarity and capture the underlying temporal dependencies

effectively.

In the domain of TSF, the prevailing methods have distinct

requirements regarding the stationarity of the data. ARIMA

and ES methods necessitate the time series to be stationary

[5], [6]. Furthermore, STL and Prophet rely on decomposition-

based techniques and are suitable for predicting non-stationary

sequences arising from diurnal, seasonal, or other periodic

patterns [7], [8].

While some deep learning models like LSTM and GRU

have shown promising results in TSF [12], they still have

room for optimization in accurately capturing the underlying

patterns, in cases where the non-stationarity is severe or when

dealing with complex non-linear trends. In situations where

non-stationarity is pronounced, preprocessing techniques such

as differencing or detrending may be imperative to enhance

the model’s performance and stability [13]. Additionally, aug-

menting the model with exogenous variables or features can

further reinforce its capacity to handle non-stationary data and

capture relevant patterns for accurate forecasting [14].

In scenarios where data non-stationarity arises from unpre-

dictable influences, such as interest rate fluctuations resulting

from government monetary policies [15], augmenting the pre-

dictive model with identifiable features capturing the dynamics

around change points becomes crucial for enhancing the

forecasting performance. However, the majority of sequences

in the natural world are non-stationary. One approach to

enhance prediction accuracy is to incorporate non-stationary

features into the prediction model. For instance, Kyong Jo

Oh et. [15] and Ayla Jungbluth et al. [16] first segment

the sequence based on its stationarity and subsequently train

and predict using the segmented data, resulting in improved

predictive performance. However, these methods that leverage
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sequence stationarity features primarily operate during the

data preprocessing stage, which may limit the model’s ability

to capture global sequence characteristics, thereby potentially

affecting predictive performance.

This paper focuses on enhancing the accuracy of TSF by

introducing time change point into neural networks, using

GRU as the representative model. The key contributions of

this research are as follows:

• We have manually crafted a dataset with distinct non-

stationary features to explore the predicting behavior

and performance of various forecasting techniques for

different types of non-stationary time series.

• We performed change point detection on time series

data from real-world datasets and subsequently integrated

the change point with GRU to propose a novel model

named Gated Recurrent Unit with Change Point Detec-

tion (GRU-CP).

• We conducted experiments on multiple datasets using

GRU-CP and compared its performance against vari-

ous high-performing TSF models. The prediction results

demonstrate that the proposed model outperforms other

models that do not consider time series change point,

achieving state-of-the-art forecasting accuracy.

The rest of the paper is organized as follows. Section 2

provides an overview of the relevant background and reviews

related work.The architecture of GRU-CP is comprehensively

described in Section 3. In Section 4, the experimental datasets,

methodologies, and resulting data are presented. Section 5

concludes the study, offering a summary of the findings and

a discussion on future research directions.

II. RELATED WORK

In this section, a comprehensive review of pertinent lit-

erature will be undertaken, encompassing non-stationary se-

quences, change point detection algorithms, TSF models, and

predictive models incorporating change point detection. This

exposition serves to underscore the novelty and necessity of

the research endeavors.

A. Non-stationary Data

Non-stationary time series are prevalent in the natural world.

For instance, in the foreign exchange market, exchange rates

are influenced by economic and political events, leading to

unstable fluctuations in exchange rate time series [15]. Sim-

ilarly, traffic flow is often affected by factors such as week-

days, weekends, and holidays, displaying evident seasonality

and periodicity within different time periods. Additionally,

temperature time series exhibit non-stationary patterns due

to variations in seasons, geographic locations, and climate

conditions.

Common variations in time series include changes in mean,

variance, and periodicity. Fig.1 illustrates the time series varia-

tions caused by changes in mean, variance, and periodicity, all

based on a simple sinusoidal curve as the underlying pattern.

These changes in the time series occur after time t = 1,

affecting the mean, variance, and periodicity, respectively.

More complex cases may involve considering changes in the

correlations of multivariate variables [17]. The non-stationarity

in time series can be attributed to rhythmic or periodic

fluctuations, which exhibit regular patterns within specific

time intervals, as well as the presence of noise leading to

stochastic behavior. Additionally, external factors or significant

events can cause abrupt structural breaks, further contributing

to the non-stationary nature of the series. These variations

in time series characteristics over time pose challenges to

conventional forecasting methods in effectively addressing the

inherent complexities.

Fig. 1. Time series variations in “mean”, “variance” and “periodicity”.

B. Change Point Detection

Non-stationary time series can be viewed as a concatenation

of multiple stationary segments, and change point detection

algorithms can be employed to partition the non-stationary

sequence into several stationary time series. Taking household

electricity consumption series [18] as an example, its time

series segmentation is illustrated in Fig.2, dividing the non-

stationary data sequence of 150 days into five stationary

segments.

Fig. 2. Segmenting non-stationary data using Change Point Detection
algorithms.

Time series decomposition algorithms typically consist of

three elements: cost function, search method and constraint

[19]. The cost function is used to measure the homogeneity

of the sub-sequences obtained after segmentation. CL2
is

commonly employed for detecting time change points related

to mean shifts and has found application in numerous studies.

It also has been successfully utilized in various domains, such
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as DNA array data and geological data analysis. In financial

literature, segmented linear regression is frequently employed

for time series detection [20], where the cost function CLinear

is used to model the segmented linear regression.

The search method is employed to minimize the cost

function. There are two categories of search methods: Op-

timal detection and Approximate detection. Optimal detection

algorithms utilize optimization techniques to explore all points

within the time series, seeking the segmentation point that

minimizes the cost function, such as Opt and Pelt algorithms.

While these algorithms offer high accuracy, they come with a

high computational complexity, with Opt having a worst-case

complexity of O(KT 2). Optimal detection methods have been

applied to DNA sequences, physiological signals, and oceano-

graphic data. In addition, Approximate detection algorithms

are based on sequential search and include window-based
methods, binary segmentation [21], and bottom-up segmenta-
tion. These algorithms have lower computational complexity

and find applications in analyzing biological signals, network

data, and financial time series, among others.

In cases where the number of change points is unknown,

constraints are added to constrain the optimization process.

By applying various constraints, such as window constraints,

minimum and maximum segment length constraints, and order

constraints, these algorithms can efficiently explore the time

series data, narrowing down the search to relevant regions

and minimizing unnecessary computations. The incorporation

of constraints aids in identifying potential change points that

adhere to specific criteria, resulting in precise and meaningful

change point detection across diverse applications.

C. TSF

Traditional TSF methods, including ARIMA [5], ES [6],

and STL [7], rely on statistical approaches to compute the

statistical characteristics of time series and subsequently make

predictions. These methods are computationally efficient but

may exhibit limitations in terms of prediction accuracy.

The Prophet model, introduced by Taylor et al., integrates

essential features such as seasonality, trend, and holidays in

time series data and possesses the capability to automatically

detect and handle outliers [8] . It employs an additive model to

fit time series, with trend and seasonal components modeled

using segmented linear regression and seasonal decomposition

techniques. Prophet also accounts for the impact of holidays

on time series, showcasing adaptability to non-stationary data.

However, in the case of complex time series data, Prophet may

demonstrate inferior performance compared to more intricate

time series models.

Recurrent Neural Networks (RNNs) demonstrate significant

superiority in capturing temporal dependencies, with special-

ized variants such as LSTM and GRU effectively addressing

the challenges related to vanishing and exploding gradients

that are characteristic of conventional RNNs. Currently, RNNs

have garnered substantial achievements in the field of sequence

forecasting. For instance, Zha et al. achieved accurate gas field

production predictions by leveraging a combination of LSTM

and Convolutional Neural Network (CNN) [22]. Similarly,

Yang et al. employed GRU to predict motion in beating heart

surgery [23].

The Transformer [11] architecture has witnessed significant

advancements in the domain of TSF, particularly in the context

of long-term time series prediction. Wu et al. [24] introduced a

novel decomposition framework called Autoformer, featuring

a self-correlation mechanism that enhances its progressive

decomposition capabilities for complex time series. Zhou et al.

[25] proposed the Informer model, which reduces the temporal

and memory complexity of Transformers while concurrently

enhancing performance of predictions. Moreover, Liu et al.

[26] leveraged multiple time resolutions in a low-complexity

variant model known as Pyraformer. These developments

exemplify the innovative applications of the Transformer struc-

ture in addressing challenges in time series prediction.

As TSF models become increasingly sophisticated, Zeng et

al. [27] contend that within the Transformer architecture, the

inherent permutation-invariant self-attention mechanism may

result in the loss of positional information within sequences.

They propose the DLinear and NLinear models to address this

concern and conduct comprehensive testing across multiple

datasets. The implications of their findings suggest that the

intricate structure of the Transformer model might not be

inherently suitable for TSF, as evidenced by the consistent

superior performance exhibited by the proposed DLinear and

NLinear models.

D. Non-stationary TSF

In the TSF literature, there exists a limited presence of

techniques that explicitly incorporate time series change point

into predictive models. Only a handful of studies have taken

time series change point into consideration, primarily dur-

ing data pre-processing phase, particularly in the context of

handling non-stationary data. For instance, Kyong Jo Oh et

al. [15] addressed financial domain data by first conducting

change point detection on time series exhibiting “structural

break”, followed by the aggregation of temporally similar

segments with shared characteristics for subsequent individ-

ual predictions. Ayla Jungbluth et al. [16] introduced the

DeepCAR model, which strategically eliminates time batches

containing change points during the data collection phase,

thereby circumventing the influence of change points.

However, the aforementioned approaches exhibit two inher-

ent limitations. Firstly, the failure to incorporate time series

change point directly into the modeling process results in the

loss of pertinent sequence information. Secondly, the practice

of discarding batches containing time series change points

can render ineffective model training for datasets with limited

available data volume, thereby impeding the robustness of the

model. The proposed GRU-CP model, which integrates the

GRU architecture with change point detection, addresses the

limitations encountered in prior studies. This model effectively

encompasses the influence of temporal change point character-

istics on prediction outcomes while simultaneously retaining
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essential training data. Consequently, it has demonstrated

remarkable efficacy in non-stationary TSF.

III. GRU-CP: NON-STATIONARY TSF WITH CHANGE

POINT DETECTION

This section commences by establishing the prescribed

format for the research questions to be addressed. Subse-

quently, it delves into the exposition of algorithms employed

for conducting change point detection on time series data,

followed by a comprehensive elucidation of the intricate

structure underpinning GRU-CP.

A. Mathematical Description
For a given time series, we denote the historical data as

X = {x1, x2 . . . xT } with a length of T , and the objective

is to predict data for the upcoming τ time points X̃ =
{xT+1, xT+2 . . . xT+τ}. Within sequence X , there exist K
change points, denoted as k1, k2 . . . kK .

Fig. 3. Schematic example of Binary Segmentation.

B. Change Point Detection
The training of TSF models typically involves a substantial

volume of data. To mitigate computational complexity, we opt

for the Binary Segmentation (BinSeg) [21] detection method,

employing CL2
as the cost function for conducting change

point detection on the time series. It is noteworthy that there

exists a multitude of algorithms for performing change point

detection on time series data. The selection of an appropriate

detection algorithm should align with the specific character-

istics of the temporal sequence variations. Importantly, this

choice may not necessarily yield the optimal outcomes in

terms of performance.
Binseg iteratively bifurcates the sequence, thereby yielding

change points subject to constraints. Fig.3 depicts the iterative

process of change point detection on a time series using

the Binseg algorithm, and the comprehensive algorithm is

presented in the form of pseudocode in Algorithm 1. The first

detected change point k̂1 satisfies:

k̂1 = arg min
1≤t<T

c(x0...t) + c(xt...T ), (1)

where c(·) corresponds to Eq.(2).

CL2(ya...b) =

b∑
t=a+1

||yt − ya...b||22, (2)

where ya...b represents the sub-sequence, and ya...b is the mean

of ya...b.

C. Model Structure

GRU-CP is an innovative extension of the GRU architecture,

incorporating time series change points. This model retains

the strengths of GRU in capturing temporal dependencies

while integrating temporal non-stationary features, rendering

it more adaptive to non-stationary data. GRU-CP introduces

supplementary components, namely m, γx, and γh, building

upon the foundation of GRU.

The m is employed to identify the occurrence of temporal

sequence changes. For a time series Xn×T of length T with

n variables, the corresponding mask m possesses the same

dimensions as Xn×T which is obtained through the time series

change point detection algorithm. In cases where change points

are present in the sequence, the elements of the mask matrix

after the change point locations are assigned a value of 1, while

those before the change points remain 0. Conversely, if no

change points are present, all elements of the mask matrix are

set to 1. The γx and γh matrices are contingent on the distance,

d, between the elements xj
i and the last element xT

i in Xn×T .

Following the detection of change points in n-dimensional

sequence Xn×T , the manifestation of the resulting m and d
can be observed in Fig.4.

Algorithm 1 Algorithm BinSeg
Input:

α Threshold for the next segmentation

x0...T Sequence for change point detection

c(·) Cost function

Output:
Change points set: {k0, k1, . . . , kK}

Initialize:
list for BinSeg ← [x0,...,T ],
list of Change Point ← [0],
flag ← True

while flag is True do
list for BinSeg ← [ ]
list of Cost ← [ ]

for xi...j in list for BinSeg do
list of Cost.append([c(xi...j)])
if c(xi...j) > α then

k ← argmini≤t<j c(xi...t) + c(xt...j)
list of Change Point.append([k])
list for BinSeg.append([xi...k, xk...j ])

end if
end for
list for BinSeg ← list for BinSeg

if ∀z ∈ list of Cost,
subject to z ≤ α

then flag ← False

end if
end while

Output: list of Change Point
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Fig. 4. Matrices m and d for a time series Xn×T . Xn×T in different colors
indicates that it is a non-stationary sequence consisting of two segments of
stationary sequences.

The matrices γx and γh are derived from d, and their

relationship is as follows:

γx = exp{−max(0,Wxd+ bx)}, (3)

γh = exp{−max(0,Whd+ bh)}. (4)

GRU-CP introduces modifications in the input x, and the

output h, through the incorporation of m, γx, and γh.

x ← m ∗ x+ (1−m) ∗ γx ∗ x, (5)

ht ← m ∗ ht + (1−m) ∗ γht ∗ ht. (6)

The updating of the internal units within GRU-CP follows the

equation provided below.

zt = σ(Wz[xt, ht−1]), (7)

rt = σ(Wr[xt, ht−1]), (8)

h̃t = tanh(W [rt ∗ ht−1, xt]), (9)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t. (10)

When there are no time series change points present in the

sequence, GRU-CP is equivalent to GRU. Fig.5 provides a

comparative illustration of the distinctions between GRU and

GRU-CP.

Fig. 5. Structure of GRU-CP, which introduces additional components
compared to the standard GRU model, denoted by the shaded regions.

Zeng et al. argue that iterated multi-step (IMS) forecasting

could lead to error accumulation, which is disadvantageous

for long-term time series prediction [27]. Consequently, we

opt for direct multistep (DMS) forecasting for data prediction,

represented as:

X̃ = WphT + bp, (11)

where X̃ represents the predicted sequence. The complete

architecture of GRU-CP network is depicted in Fig.6.

Fig. 6. Direct Multi-step Prediction with GRU-CP.

IV. EXPERIMENTS

In this section, we introduce the utilized datasets. We then

introduce the optimizer employed for model training, the loss

function and the performance metric used in our evaluation.

The experimental results of GRU-CP are then presented and

discussed. As established by Zeng et al. [27], it has been

demonstrated that the Transformer model does not perform

well in the context of TSF. Therefore, we opt to conduct

comparative experiments involving GRU [10], DLinear [27],

and proposed GRU-CP.

A. Experimental Settings

1) DataSet: In this experiment, we employed a manually

crafted dataset and three publicly available real-world datasets.

Their characteristics are as follows:

• Manually Crafted Dataset: The manually crafted dataset

encompasses a total sequence length of 5 × 105 data

points, showcasing three distinct types of temporal se-

quence variations: altering mean, varying variance, and

changing periodicity. The fundamental underlying pattern

of this dataset is sinusoidal, with the three distinct change

patterns depicted in Fig.1.

• Weather Dataset: The weather dataset documents data at

10-minute intervals throughout the year 2020 in Germany,

comprising 21 weather indicators, including air tempera-

ture and humidity.

• Solar Energy Dataset: Contained within are solar power

production records from the year 2006, sampled at 5-

minute intervals across 137 photovoltaic (PV) plants

situated in the state of Alabama.

• Exchange-Rate Dataset: Exchange-Rate [28] collects the

daily exchange rates of 8 countries from 1990 to 2016.

2) Training Optimizer: For model training, the Adam [29]

optimizer is chosen, and the loss function selected is Mean

Squared Error (MSE).
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3) Evaluation metric: Given that TSF is a type of regres-

sion problem, opting for Mean Squared Error (MSE) and

Mean Absolute Error (MAE) as the evaluation metrics is

most appropriate. Both MSE and MAE exhibit an inverse

relationship with model performance, where smaller values

indicate superior performance.

B. Experimental Results

1) Manually Crafted Dataset: In order to assess the adapt-

ability and predictability of different methods concerning time

series with various types of change points, experiments were

conducted on a range of manually crafted datasets featuring

diverse change point patterns. To ensure that the models could

capture comprehensive sequential patterns, a historical window

length of {100} was set, and prediction window lengths were

set at {3, 6, 12, 24}, respectively. The obtained results are

summarized in Table I.

2) Short-term Forecast: In order to compare the perfor-

mance of the models on real-world datasets, we conducted

experiments on the weather, solar, and exchange datasets for

TSF. Considering the varying time granularities of the three

datasets, we set the historical lookback window sizes as 144,

288, and 96 for the weather, solar, and exchange datasets

respectively. We predicted future time lengths of {3, 6, 12, 24}
units. The results are presented in Table II.

3) Long-term Forecast: Zhou et al. have highlighted the

substantial demand for long-term TSF in real-world appli-

cations, underscoring the significance of a model’s capacity

for extended prediction. Therefore, we also investigate the

long-term prediction capability of GRU-CP. In this context,

we maintain the same historical lookback window size as

used in short-term forecasting experiments, while extending

the prediction horizon to {96, 192, 336, 720} time units. The

corresponding results are presented in Table III.

C. Result Analysis

The three datasets listed in Table I exhibits variations due to

shifts in mean, changes in variance, and periodic fluctuations.

The data presented in the table demonstrates that, for time

series containing change points, the performance of GRU-

CP, which incorporates change point features, significantly

outperforms models that do not consider these features. Fig.7

illustrates the predictive adaptability of the three models to

sequences containing different types of change points. It is

evident that the recurrent neural network based on GRU sur-

passes linear models in TSF, particularly in scenarios involving

mean shifts and periodic fluctuations. Both Table I and Fig.7

collectively indicate that linear models struggle to effectively

capture changes in underlying periodicity when present in

time series. This advantage can be attributed to the increased

complexity of GRU and GRU-CP, characterized by a higher

number of parameters and the inclusion of nonlinear units,

rendering them more intricate than linear models.

Fig.8 illustrates the predictions of the three models on

real-world datasets. From the graph, it is evident that the

performance of GRU-CP surpasses that of the other two

models across all three datasets, particularly notable in the

case of the “solar” dataset. The “solar” dataset exhibits distinct

variations in its sequence, which renders GRU-CP capable

of achieving enhanced predictive accuracy. Conversely, the

other two models lacking change point features are unable

to accurately capture the structural shifts, or “structure break”

in the sequence.

To further validate the superior predictive performance of

GRU-CP on sequences with variations, we selected three

batches of data from the “solar” dataset for observation. These

three batches of data were excluded from the model training

process and correspond to the time periods of 2006-10-16
00:00 to 2006-10-17 07:55, 2006-10-16 08:00 to 2006-10-
17 15:55, and 2006-10-16 16:00 to 2006-10-17 23:55, with

data collected every five minutes to capture solar power data

(MW). The predictive results of these three data segments are

shown in Fig.9. The observed pattern indicates that GRU-CP

is adept at swiftly capturing the underlying variations in the

data, thereby achieving superior predictive performance. This

further substantiates the adaptive capabilities of GRU-CP on

non-stationary sequences.

Tables II and III present an intriguing observation: despite

DLinear outperforming Transformer in TSF, GRU exhibits

better performance than DLinear when utilizing direct mul-

tistep (DMS) forecasting. This outcome further reinforces the

research of Zeng et al. [27], suggesting that the Transformer

architecture is not well-suited for TSF tasks. Specifically, in

the context of DMS forecasting, the effectiveness of a basic

recurrent neural network surpasses that of a simple linear

model. This prompts us to redirect the focus of TSF models

towards more concise architectural designs.

The results in Tables II and III illustrate the enhanced

performance of models that incorporate time series change

point features when applied to real-world publicly available

datasets. As demonstrated in Fig.5, it becomes evident that if

change point detection is not applied to the data, GRU-CP is

equivalent to GRU, thereby endowing GRU-CP with broader

applicability. The comparative analysis of the performance

between GRU-CP and GRU in this context underscores the

benefit of incorporating change point features on TSF.

V. CONCLUSIONS

In this study, we initiated by constructing an artificial

time series with distinct types of change points and applied

various TSF models for prediction. This endeavor revealed

that different models exhibited varying degrees of adaptabil-

ity to different types of change points, with linear models

demonstrating poor performance when faced with time series

characterized by changing periodic patterns. This discovery

can offer guidance for selecting suitable models for different

types of TSF scenarios.

Furthermore, we devised GRU-CP by integrating change

point features into GRU. Through validation, we show that

GRU-CP possessed superior predictive capabilities for non-

stationary time series, while it yielded equivalent performance

to GRU when dealing with stationary time series. Additionally,

6



TABLE I
MANUALLY CRAFTED DATASET

mean periodicity variance
Model Metric 3 6 12 24 3 6 12 24 3 6 12 24

MSE 0.0195 0.0336 0.0586 0.1078 0.0232 0.0448 0.0753 0.1300 0.0327 0.0479 0.0818 0.1485
GRU-CP MAE 0.0247 0.0408 0.0729 0.1338 0.0415 0.0615 0.1048 0.1677 0.0404 0.0520 0.0892 0.1436

MSE 0.0194 0.0354 0.0595 0.1061 0.0237 0.0531 0.0766 0.1419 0.0328 0.0483 0.0832 0.1461
GRU MAE 0.0265 0.0560 0.0766 0.1354 0.0436 0.0834 0.1087 0.1664 0.0381 0.0524 0.0897 0.1539

MSE 0.0268 0.0416 0.0654 0.1165 0.0893 0.1642 0.3517 0.5590 0.0399 0.0548 0.0865 0.1494
DLinear MAE 0.0537 0.0674 0.0928 0.1623 0.1722 0.2614 0.4163 0.5793 0.0626 0.0761 0.1014 0.1638

TABLE II
SHORT-TERM FORECAST

weather solar exchange
Model Metric 3 6 12 24 3 6 12 24 3 6 12 24

MSE 0.0002 0.0004 0.0011 0.0046 0.0200 0.0322 0.0470 0.1000 0.0118 0.0168 0.0276 0.0452
GRU-CP MAE 0.0091 0.0134 0.0220 0.0490 0.0558 0.0825 0.1026 0.1670 0.0704 0.0834 0.1163 0.1546

MSE 0.0002 0.0006 0.0017 0.0085 0.0205 0.0318 0.0471 0.0803 0.0121 0.0166 0.1182 0.0464
GRU MAE 0.0090 0.0167 0.0296 0.0687 0.0573 0.0843 0.0997 0.1366 0.0685 0.0832 0.2809 0.1541

MSE 0.0002 0.0010 0.0038 0.0032 0.0228 0.0364 0.0595 0.1009 0.0113 0.0167 0.0278 0.0461
DLinear MAE 0.0089 0.0020 0.0469 0.0385 0.0733 0.1066 0.1400 0.1964 0.0677 0.0866 0.1187 0.1573

TABLE III
LONG-TERM FORECAST

weather solar exchange
Model Metric 96 192 336 720 96 192 336 720 96 192 336 720

MSE 0.0323 0.0770 0.1228 0.1719 0.1980 0.2044 0.2191 0.2579 0.1736 0.2714 0.5076 0.3475
GRU-CP MAE 0.1280 0.2069 0.2677 0.3282 0.2420 0.2599 0.2706 0.2978 0.3291 0.4144 0.5668 0.4709

MSE 0.0454 0.0808 0.1172 0.2591 0.2117 0.2147 0.2197 0.2328 0.1512 0.2840 0.5179 0.4671
GRU MAE 0.1540 0.2142 0.2572 0.4020 0.2600 0.2722 0.2628 0.2755 0.2976 0.4253 0.5735 0.5543

MSE 0.0639 0.0831 0.1338 0.1958 0.2110 0.2398 0.2574 0.3103 0.1789 0.3102 0.5354 0.4671
DLinear MAE 0.1921 0.2104 0.2711 0.3524 0.2910 0.3142 0.3158 0.3548 0.3230 0.4432 0.5832 0.5450

Fig. 7. Predictions of three models with an output length τ = 24 on non-stationary sequences caused by “mean”, “variance”, and “periodicity”.
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Fig. 8. Illustrations depicting predictions of three models with an output length τ = 96 on real-world dataset, labeled as “exchange”, “solar”, and “weather”.

Fig. 9. Illustrations depicting predictions of three models on distinct three temporal segments.

the study reaffirmed the robust performance of simple recur-

rent neural networks in the field of TSF, prompting researchers

to further prioritize streamlined model architectures for time

series prediction.

There are certain aspects in this study that require further

refinements. For instance, the performance of GRU-CP for

non-stationary multivariate time series remains unexplored. In

terms of performance comparison, the study lacks a compari-

son between GRU-CP and statistical methods such as Prophet.

Furthermore, future research should delve into investigating

the influence of different change point detection algorithms on

time series prediction. These avenues for improvement suggest

potential directions for extending the scope of this study.
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