Cyberc2020 Keynote Speakers

Shen Changxiang

Chinese Academy of Engineering, China

Topic: Establish a scientific concept of network security and build a strong defense line of network security

Abstract: This talk will introduce an active immune trusted computing system in order to defend cyberspace vulnerability. This system is designed in a dual computing protection structure that consists of secure and trusted computing nodes, which implement active immune triple-protection supported by the Trusted Security Management Center. It achieves the safety protection such that unauthorized persons cannot obtain sensitive information, the system and its information cannot be changed, and cyber-attacks are immunized maximally. Such a system provides safe and reliable accessibility for users through innovative trusted cryptosystems, innovative active immune system structures, and advanced trusted computing. Trusted computing 3.0 has been successfully applied in 5G backbone networks, national power and other fields.

Biography: Shen Changxiang is an academician of the Chinese Academy of engineering. He graduated from the Department of mathematics of Zhejiang University in 1965. His research interests include military computer information systems, cryptographic engineering, information security architecture, system software security (secure operating systems, secure databases, etc.), network security, etc. He is currently a member of the Standing Committee of the Information and Electronic Engineering Department of the Chinese Academy of Engineering, a member of the State Council Information Technology Expert Advisory Committee, an office consultant of the State Password Management Committee, and the director of the Information Confidentiality Professional Committee of the Chinese Computer Society. He was once awarded the honorary title of “Navy Model Scientific and Technological Worker” and was named a national young and middle-aged expert with outstanding contributions. He has completed more than 20 major scientific research projects and achieved many important results. He has won 2 first prizes, 3 second prizes, 3 third prizes, and more than 10 military science and technology progress awards.

Lei Zhang

James Watt School of Engineering, University of Glasgow, UK

Topic: Wireless Blockchain Networks for COVID-19, 6G, and Automation

Abstract: Originally proposed as the backbone technology of Bitcoin cryptocurrency, blockchain has become a revolutionary decentralised data management framework that can transform the way in which we share information. It offers immutable, transparent, secure and auditable ledger in a trust-less distributed environment, to verify the integrity and traceability of information/assets during their life cycle. Moreover, without a central authority’s involvement, blockchain-enabled smart contracts can significantly reduce manual interventions and thus improve efficiency.
In this talk, wireless blockchain network (WBN), with different network topology and communication protocols, for various commonly used blockchains will be introduced. We will also discover the challenges of WBN, and the relationship between the communication (in terms of spectrum and power provision), and the wireless blockchain network performance (in terms of scalability, throughput and latency, and security). We will try to answer one important question, how much communication resource is needed to run a wireless blockchain network. The talk will present three exemplary use cases we are recently developed: 1), how to use blockchain to achieve privacy-preserving contact tracing APP for COVID-19; 2) how to use blockchain for 5G and beyond spectrum (and computing, power) resource management and sharing; 3), how to use distributed blockchain protocols to achieve high reliable consensus for missing critical industrial IoT and automation.

Biography: Dr. Lei Zhang is a Senior Lecturer (Associate Professor) at the University of Glasgow, U.K. He received his Ph.D. from the University of Sheffield, U.K. His research interests include wireless communication systems and networks, blockchain technology, data privacy and security, radio access network slicing (RAN slicing), Internet of Things (IoT), multi-antenna signal processing, MIMO systems, etc. He has 19 patents granted/filed in more than 30 countries/regions including US/UK/EU/China/Japan etc. Dr Zhang has published 3 books and 100+ peer-reviewed papers. He received IEEE Communication Society TAOS Best Paper Award 2019. He is a Technical Committee Chair of 5th International conference on UK-China Emerging Technologies (UCET) 2020. He was the Publication and Registration Chair of IEEE Sensor Array and Multichannel (SAM) 2018, Co-chair of Cyber-C Blockchain workshop 2019. He is an associate editor of IEEE Internet of Things (IoT) Journal, IEEE Wireless Communications Letters and Digital Communications and Networks. Dr Zhang’s research was widely covered by media including BBC.

David M. Perry

InfoBeyond Technology LLC, USA

Topic: SemCluster: Clustering of Imperative Programming Assignments Based on Quantitative Semantic Features

Abstract: A fundamental challenge in automated reasoning about programming assignments at scale is clustering student submissions based on their underlying algorithms. State-of-the-art clustering techniques are sensitive to control structure variations, cannot cluster buggy solutions with similar correct solutions, and either require expensive pair-wise program analyses or training efforts. We propose a novel technique that can cluster small imperative programs based on their algorithmic essence: (A) how the input space is partitioned into equivalence classes and (B) how the problem is uniquely addressed within individual equivalence classes. We capture these algorithmic aspects as two quantitative semantic program features that are merged into a program's vector representation. Programs are then clustered using their vector representations. The computation of our first semantic feature leverages model counting to identify the number of inputs belonging to an input equivalence class. The computation of our second semantic feature abstracts the program's data flow by tracking the number of occurrences of a unique pair of consecutive values of a variable during its lifetime. The comprehensive evaluation of our tool SemCluster on benchmarks drawn from solutions to small programming assignments shows that SemCluster (1) generates far fewer clusters than other clustering techniques, (2) precisely identifies distinct solution strategies, and (3) boosts the performance of clustering-based program repair, all within a reasonable amount of time.

Biography: David Perry completed his education from the University of Kentucky and Purdue University (West Lafayette, IN). His research interests are software engineering, programming languages, and program verification. Specifically, he has performed research involving program analysis, automated program verification/testing, semantic-based program clustering, and symbolic execution optimization. He has conducted research at the National Security Agency, Sandia National Laboratory, and MIT Lincoln Laboratory where he contributed to software development for High Performance Computing systems. Since 2018, he has been working at InfoBeyond on R&D projects awarded by the Department of Energy and Department of Defense. David has published several papers at ACM SIGPLAN, ACM ICSE, IEEE/ACM ASE, ACM SIGSOFT, etc.

Guangyi Liu

China Mobile, China

Topic: 6G beyond 2030: digital twin, ubiquitous intelligence

Abstract: 5G has been commercialized globally in large scale since 2019. The new era of 'Internet of Everything' has been started, which will stimulate the new demand for improved capabilities of mobile network from the perspective of data rate, efficiency and reliability, etc. These demands will drive the mobile communication evolve towards 6G. Now the research of 6G is still in the stage of vision requirements definition and technical exploration, and the 6G key technical directions are still divergent and far from consensus. With the deep integration of DICT, 6G will fully support the digitization of the world to realize the vision of “digital twin, ubiquitous intelligences”. The twin digital world is the image of the physical world, helping us to further improve the quality of our life and increase the production efficiency. Some typical application scenarios, such as twin body area networks and sensory interconnections related to human development, super smart transportation, holographic communication and intelligent production related to social development, etc., demand higher and more comprehensive network performance indicator requirements for 6G network, such as extremely high reliability, global terrestrial and non-terrestrial 3D coverage, and 2~3 times the spectrum efficiency improvement. With the emergence of new scenarios in the future, 6G network needs more new key performance indicators. The 6G network seems to have several basic features: on-demand fulfillment, lite network, soft network, native AI, native security and digital twin, which will bring innovations to the wireless communication network and realize more efficient and intelligent network development. Network architecture is the cornerstone and framework of the 6G mobile system. We need to further explore it and wish to reach consensus with the industry. So that the future network can be deeply integrated into people's daily life, work and entertainment, empower thousands of industries, and achieve the grand goal of 6G rebuild a new world.

Biography: Dr. Guangyi Liu received his PhD. from Beijing University of Posts and Telecommunications in 2006. He joined China Mobile since 2006, now he is the leading specialist and 6G director of China Mobile Group. Before he joined China Mobile, he has worked for Shanghai Bell and Siemens (Now Nokia) for 3 years. He has led the standardization and industrialization of 4G and 5G in China mobile from 2007 to 2019. Now he is leading the research of 6G. He is also acting as the vice chair of THz and mm-wave industry alliance, and has acted as the chair of spectrum working group and coordinator of 5G eMBB program in Global TD-LTE Initiative (GTI). He has been granted more than 150 patents, and authored and coauthored more than 7 books and published more than 150 papers in IEEE journal and conference.

Emerging Technology Summit and CyberC Keynotes

Raimo Kantola

Professor of Networking Technology, Aalto University, Finland

Topic: Cooperative Security for 5G/6G and the Internet

Abstract: The talk describes the idea of cooperative security for the Internet and 5G/6G. The idea of cooperative security is that all good guys would cooperate automatically to mitigate all hacking over the Internet sharing evidence of misbehaviour, constraining detected infected hosts and deploying security patches as quickly as they become available. The talk outlines the solution called Customer Edge Switching as an implementation of cooperative security. The talk discusses the architecture and describes briefly some use cases under real world constraints. The technical details can be found in and naturally e.g. in IEEE Explore. The concepts presented in the talk have been proven by Proof of Concept or running code level experimental implementation published in GitHub/Aalto5G. We encourage it’s use in further experimentation. Our current work is targeted at optimizing the body of running code and learning from use cases in 5G vertical networks.

Biography: Raimo Kantola has a D.Tech degree in computer science from Helsinki University of Technology, Finland. He is a professor in networking technology at department of Comnet, Aalto University, Finland. His research interests include SDN, customer edge switching, trust in networks and cloud security.

Khalil Drira

LAAS-CNRS, University of Toulouse, France

Topic: Semantic interoperability for IoT Platforms

Abstract: Recent advances in information and communication technologies include virtualization both at the processing and the communication levels as well as interoperability at the different interaction levels. The progress in networking encompasses Machine-to-Machine (M2M) communications for Internet of Things and Big Data traffic that constitute active research and standardization activities in Europe by ETSI, and around the world by OneM2M. The design and deployment of interoperable IoT platforms based on open systems and interfaces are identified as enablers for the digital market. The strategic application domains include e-heath, connected and automated vehicles, advanced dynamic manufacturing, energy management and smart homes, buildings and cities. IoT Systems provide advantages in all these various domains. This fast-growing ecosystem is leading IoT towards a promising future. However, IoT systems expansion opportunities are not straightforward. A set of challenges should be overcome to enable IoT mass-scale deployment across various domains including interoperability, autonomy, and scalability issues. This talk aims at giving an overview of these challenges. Recent international standardization and R&D initiatives will be investigated. Future directions will be highlighted.

Biography: Khalil DRIRA received the Engineering and M.S. (DEA) degrees in Computer Science from ENSEEIHT (INP Toulouse, France), in 1988. He obtained the Ph.D. and HDR degrees in Computer Science from UPS, University Paul Sabatier Toulouse, France in 1992, and 2005 respectively. He joined CNRS, the French National Center for Scientific Research, in 1993 as a researcher. He is, since Oct 2010, Research Director, a full-time research position at CNRS. Khalil DRIRA’s research interests include formal design, implementation, testing and provisioning of distributed communicating systems and cooperative networked services. He is or has been involved in several national and international projects in the field of distributed and concurrent communicating systems. He is author of more than 150 regular and invited papers in international conferences and journals. He is member of the editorial board of many international journals in the field of software architecture and communicating and distributed systems. Khalil DRIRA has been editor of a number of proceedings, books and journal special issues in these fields.

Chee Ching

President, FarEasTone, Taiwan

Topic: Telco’s Digital Transformation & 5G

Abstract: Global telecom market penetration is getting saturated. The industry is facing severe market competition and threats from Internet giants and other OTT players.

FarEasTone, like the most of worldwide leading telco operators, is transforming from a traditional telecom operator to a digital service and enterprise solution provider to open up new economy opportunities. FarEasTone has adopt Big Data analytics , Artificial Intelligence, and Internet of Things (IoT) as core capabilities and competitive advantages. For instance, building up own IoT platform to capture new revenue streams and applying AI technology to fraud detection for revenue loss prevention.

5G as a revolutionary technology is enabling new applications like high quality entertainment services in consumer segment and vertical solutions in enterprise sector, which is becoming the new blue ocean for the telcos.

Biography: Dr. Chee Ching joined FarEasTone in Sep. 2018 as the Chief Transformation Officer and was appointed as the President since Jan. 2019. Her current priority is on the strategy implementation of “Fit, Transform and Grow”, building 5G, Big Data, AI & IoT capabilities, and accelerating FET’s transformation into digital services & advanced ICT Enterprise Solutions provider, beyond traditional telecom services. Chee brought to FarEasTone more than 23 years of rich experience in network operations and IT management in AT&T. Her professional background spans from Network Operations Planning, Systems Engineering, and Process Engineering to Delivering E2E System Solutions for AT&T’s products and services. Chee was awarded Outstanding 50 Asian Americans in Business in 2018 for her distinguished performance.

Anup Kumar

PhD, Professor, University of Louisville, Kentucky, USA

Topic: Building Secure Cloud Information System using Cloud Security Architecture Tool

Abstract: Todays commercial and government information systems include clouds, networks, data systems, and complex storage databases that contains sensitive personal information. These commercial and government organizations must be entrusted with security and privacy risk management to ensure their information systems operate securely and reliably. In order to provide structured guidance and framework NIST has developed extensive guidelines and specifications to assist organizations. The NIST 800 Series is a set of documents that describe United States federal government computer security policies to implement and manage the system information security risk. For example, SP 800-200 is Cloud Computing Security Reference Architecture specification to accelerate the securely adoption of cloud computing. SP 800-53 R4 defines the security and privacy controls recommended for each functional capability or micro-service a system implements. One of the issues with these standards is how an organization can implement these specifications. To provide this capability, a tool Cloud Security Architecture Tool (CSAT) is developed that aims to leverage the Cybersecurity Framework (CSF) to identify the NIST SP 800-53 security and privacy controls for cloud-based information systems by identifying the necessary functional capabilities the system needs to provide to support the organization's mission and the service the system is designed for. In this talk, we will discuss the motivation and significance of NIST’s specifications. In addition, it provides a discussion on the role of CSAT in an organization to enhance and facilitate adoption of secure cloud solution.

Biography: Anup Kumar ( completed his Ph.D. from North Carolina State University and is currently a Professor of CECS Department at the University of Louisville. He is also the Director of Mobile Information Network and Distributed Systems (MINDS) Lab. His research interests include web services, wireless networks, distributed system modelling, and simulation. He has co-edited a book titled, “Handbook of Mobile Systems: Applications ands Services” published by CRC press in 2012. He is an Associate Editor of IEEE Transactions on Services Computing. He is also the Associate Editor of Internal Journal of Web Services Research and International Society of Computers and Their Application Journal. He is a member of IEEE Distinguished Visitor Program (2006-2008). He was the Chair of IEEE Computer Society Technical committee on Simulation (TCSIM) (2004-2007). He has published and presented over 150 papers. Some of his papers have appeared in ACM Multimedia Systems Journal, several IEEE Transactions, Wireless Communication and Mobile Computing, Journal of Parallel and Distributed Computing, IEEE Journal on Selected Areas in Communications etc. He was the Associate Editor of International Journal of Engineering Design and Automation 1995-1998. He has served on many conference program and organizing committees such as IEEE ISCC 2007, IEEE ICSW-2006, IEEE MASS-2005, IEEE SCC-2005, IEEE ICWS-2005, CIT-2005, IEEE MASCOTS, ADCOM 97 and 98. He has also edited special issues in IEEE Internet Magazine, and International Journal on Computers and Operations Research. He is a Senior Member of IEEE.

Prof. Chengnian Long

Shanghai JiaoTong University, Shanghai, China

Topic: Trusted Intelligent Internet of Things: Key Technologies and Application Cases

Abstract: This report introduces the use of blockchain technology to construct a trusted and distributed IoT system architecture to enhance IoT system security and data sharing, which can promote the application value for IoT in future digital economy. Key technologies include device autonomous identity and security authentication, distributed data storage and distribution, and distributed consensus protocol. We will introduce some application cases in intelligent transportation and smart medical care to explore the value of blockchain technology in the real economy.

First, many current critical infrastructures such as power grids, transportation systems, and medicine systems are emerging with the tight integration of physical processes and cyber world. Due to the crucial role of cyber-physical systems in everyday life, cyber-physical security needs to be promptly addressed. Particularly, his research group is focus on the security estimation and control of power grids and industrial control systems. Second, he has a long-term concern on the fundamental networking problem in Internet of Things, such as crowd sensing system, fog computing of intelligence gateway, MIMO wireless technology for smart devices. Particularly, his research group is focus on the sensing, computing, communication, and control integration of Internet of Vehicles (IoV). Third, the long-term view is to develop system intelligence for both CPS and IoT. An emerging trend is data-driven distributed intelligence system. Thus, the large-scale trust and reliable data is the power source for intelligence system. Furthermore, to apply the AI technology (deep learning and computer vision) from the laboratory to the real world that require a new approach to supporting the associated power, weight, space, and real-time constraints. Particularly, his research group is focus on investigating the blockchain technology to construct distributed intelligence system and developing the embedded computer vision and deep learning technology for UAV and autonomous vehicles.

Biography: Chengnian Long is a full professor of Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University. His research interest mainly focuses on the Cyber-Physical Systems (CPS), including: 1) Cyber-Physical Systems (CPS) Security: security estimation and control of CPS, intrusion detection system, blockchain security; 2) Internet of Things (IoT): crowd sensing, fog computing, internet of vehicle, wireless MIMO system and 3) Distributed Intelligence Systems: embedded computer vision for smart devices (UAV, Autonomous vehicles), blockchain.

Yang Yang

Shanghai Tech University, Shanghai, China

Topic: AI-enabled Wireless Communication Networks

Abstract: In order to meet the ever-growing requirements of future intelligent applications and services, more and more computing resources and distributed AI algorithms have been deployed in wireless communication networks, thus achieving massive data processing and real-time decision making at local or regional sites. In this talk, we will first introduce the architecture, advantages and future trends of multi-tier computing networks, including the differences and collaborations between cloud, fog, and edge computing technologies. Further, a series of novel AI algorithms and solutions are developed to utilize local and regional computing resources for wireless channel modelling, capacity and coverage optimization, and indoor localization and tracking applications. Our research and experiments reveals the potentials of AI algorithms for wireless communication networks, as well as some new bottlenecks and challenges for future investigation.

Biography: Dr. Yang Yang is currently a full professor with School of Information Science and Technology, ShanghaiTech University, China. Prior to that, he has held faculty positions at The Chinese University of Hong Kong, Brunel University (UK), University College London (UCL, UK), and SIMIT, Chinese Academy of Sciences (CAS, China).

Yang is a member of the Chief Technical Committee of the National Science and Technology Major Project "New Generation Mobile Wireless Broadband Communication Networks" (2008-2020), which is funded by the Ministry of Industry and Information Technology (MIIT) of China. In addition, he is on the Chief Technical Committee for the National 863 Hi-Tech R&D Program "5G System R&D Major Projects", which is funded by the Ministry of Science and Technology (MOST) of China. Yang is a General Co-Chair of IEEE DSP 2018 conference and a TPC Vice-Chair of IEEE ICC 2019 conference.
Yang's current research interests include wireless sensor networks, Internet of Things, Fog computing, Open 5G, and advanced wireless testbeds. He has published more than 200 papers and filed over 80 technical patents in wireless communications. He is a Fellow of the IEEE.

Lin Dai

City University of Hong Kong, China

Topic: Optimal Network Decomposition for Next-Generation Mobile Communication Systems

Abstract: The fundamental idea of network decomposition is to break a large-scale network into smaller parts such that the subnetworks can operate in parallel, each with a much lower dimensionality. For large-scale wireless networks, the cellular structure is based on the idea of network decomposition, where the network is decomposed into multiple subnetworks, i.e., cells, according to the coverage of each base-station (BS). Such a decomposition scheme, nevertheless, leads to strong interference among subnetworks, which becomes increasingly significant as the density of BSs grows. For the next-generation cellular network where a massive amount of BSs need to be deployed to meet the ever-increasing demand of high data rate, it is of paramount importance to develop efficient network decomposition schemes to replace the current cellular structure. How to build such a decomposition framework, unfortunately, has remained largely unknown.

In this talk, I will introduce our recently proposed network decomposition theory for large-scale wireless networks. Specifically, starting from a novel bipartite graph representation of an infrastructure-based wireless network, I will show that in general the optimal network decomposition can be formulated as a graph partitioning problem. I will then demonstrate how to solve it by the proposed Binary Search based Spectral Relaxation (BSSR) algorithm. The performance of the proposed BSSR algorithm is further examined and compared to the current cellular structure and BS clustering in various scenarios. Significant gains are shown to be achieved by the proposed BSSR algorithm, which corroborates that the optimal network decomposition of next-generation cellular networks should be performed based on a bipartite graph where the geographical information of BSs and users are both included.

Biography: Dr. Lin Dai received the B.S. degree from Huazhong University of Science and Technology, Wuhan, China, and the M.S. and Ph.D. degrees from Tsinghua University, Beijing, China, all in electronic engineering. She is now a full professor of Department of Electronic Engineering of City University of Hong Kong.

She has broad interests in communications and networking theory, with special interests in wireless communications. Her recent research work focuses on modeling, performance analysis and optimal access design of next-generation mobile communication systems.

She was a co-recipient of the Best Paper Award at the IEEE Wireless Communications and Networking Conference (WCNC) 2007 and the IEEE Marconi Prize Paper Award (the annual Best Paper Award of IEEE Transactions on Wireless Communications) in 2009. She received The President's Award of City University of Hong Kong in 2017.

Prof. Guangxia Xu

Chongqing University of Posts and Telecommunications,Chongqiong, China

Topic: Blockchain Data Sharing and Its Industry Case Study

Abstract: Due to the advanced features of openness, anonymity, immutability and decentralization of blockchain technology, it is currently a hot topic of interest to technology giants and business communities. Combining with big data, cloud computing and IoT, blockchain technology is a promising trend and is expected to ensure sharing data trustworthiness and security. Using the smart contract and distributed storage in blockchain to reduce costs, improve work efficiency and promote social development of the intelligent.

This talk will introduce disadvantages of traditional centralized data and definite advantages brought by blockchain in data sharing. Furthermore, we will propose the application of blockchain data sharing in different industries in detail, such as agriculture, IoT, medical health and so on. Especially, framework design, smart contracts and consensus mechanisms give our own methods. At last, we will talk about the point that blockchain promotes coordinated social development and shared economy.

Biography: Dr. Xu is currently Ph.D. adviser, vice director of Network and Information Security Engineering Center of Chongqing. She is a senior member of China Computer Federation (CCF); Blockchain Committee member; ACM and IEEE member; vice chairman of Information Security Association of Chongqing; expert of National Natural Science Foundation and committee member of Technical Committee on Fault Tolerant Computing of CCF. She has served as director of Big Data Security and Intelligence Analytics Technology Innovation Team in Chongqing. She was a visiting scholar at Stevens Institute of Technology, New Jersey, USA and a post-doctor at School of Communication and Information Engineering, Chongqing University.

Prof. Xu ‘s research interests include Blockchain Technology and Application, Big Data Security and Analytics, Network Security and Management, IoT Security and AI Security. Extensive and novel results have been accomplished and most of them have already been published through high-quality journal, conference papers and projects. She is in charge of one sub-project of National Science and Technology Support Projects, two projects of National Natural Science Foundation of China, one sub-project of information Security Projects of National Development and Reform Commission, and more. In addition, she is a reviewer for 《ACM Computing Surveys》、《IEEE Access》、《Digital Communications and Networks》、《International Journal of Geographical Information Science》, and member of the editorial board of 《Journal of Chongqing University of Posts and Telecommunications.

Rui Tan

School of Computer Science and Engineering, Nanyang Technological University, Singapore

Topic: Cyber-Physical Approach to Resilient City-Scale IoT Systems

Abstract: With the increasing connectivity and intelligence of massive objects, various city-scale systems such as utility infrastructures and transportation systems are evolving into their next generations for higher efficiency. However, they also face growing risks such as unexpected disturbances and even malicious attacks. Therefore, in the pursuit of the smart city vision, it is also important to enhance the resilience of these systems upon the contingency of these risks. In this talk, I will present our recent research on leveraging a city-scale physical process, i.e., the delivery of alternating current electricity, to achieve resilient timestamping and clock synchronization for Internet-of-Things objects found in electrified systems, smart ambient, and even on human bodies.

Biography: Dr. Rui Tan is an Assistant Professor at School of Computer Science and Engineering, Nanyang Technological University. Previously, he was a Senior Research Scientist at Advanced Digital Sciences Center, a Singapore-based research center of University of Illinois at Urbana-Champaign, and a postdoctoral Research Associate at Michigan State University. He received PhD degree from City University of Hong Kong. His research interests include sensor networks, Internet of things, and cyber-physical systems. He is the recipients of IPSN'17 and CPSR-SG'17 Best Paper Awards, IPSN'14 and PerCom'13 Best Paper Award Runner-Ups, and CityU Outstanding Academic Performance Award. He is a Senior Member of the IEEE.

Dr. Li Tian

Research Manager, Department of Wireless Algorithm, ZTE Corporation, China

Topic: Ubiquitous Network - From Terrestrial To Aerospace

Abstract: The Phase 1 5G NR standardization (Rel.15) has been frozen in 3GPP by March 2019, which mainly focused on the traditional eMBB services. In later releases, the standardization society envisions more vertical applications from the scoping of the work items, such as V2X, NR-U, Industrial IoT, NR-light, NTN, AR/VR, home-IoT. The 5G-beyond or 6G vision is aimed to provide a ubiquitous and robust network, where mobile terminals could be anywhere and access the network at any time. This cannot be fulfilled solely based on the traditional cellular networks, but also rely on the non-terrestrial operators such as satellite and HAPS (e.g., drones or hot-air balloon). This talk briefly introduces the latest standardization activities in 3GPP, and focus more on the use case and technical challenges of non-terrestrial networks.

Biography: Dr. Li Tian is currently a research manager at the department of the wireless algorithm of ZTE corporation. He received his bachelor degree in Communication Engineering and the Ph.D. degree in Control Science and Control Engineering from Tongji University, Shanghai, China. He was a visiting Ph.D. student at the Department of Electronics and Information Systems (DEIS) of University of Bologna from 2013 to 2014. His current research interests are in the field of 5G new radio access technology, with over 40 scientific papers, 200 standard contributions, and 30 globally filed patents. He is a 3GPP RAN delegate and serve as rapporteur of Rel.16 Two-step RACH WI.

Junlan Feng

Chief Scientist at China Mobile Research,General Manager of AI and Intelligent Operation R&D Center

Topic: When Telecom Network Meets Neural Network

Abstract: Network Intelligence lately has been a luring concept that network operators, vendors, and researchers all are passionate about. Deep neural network is the main stream architecture of the state-of-art artificial intelligence technologies across a number of disciplines such as image processing, speech recognition, natural language understanding, etc. What is the potential of a deep neural network for a telecom network? This talk overviews the recent industrial and academic efforts on this line of exploration and shares the challenges.

Biography: Dr. Feng has led R&D of China Mobile on artificial intelligence and big data since September 2013. She had been the architect of IBM Big Data from January 2013.1 to August 2013 and a principal researcher at AT&T Labs Research from August 2001 to January 2013. Dr. Feng received her Ph.D. on Speech Recognition in 2001 from Chinese Academy of Sciences. She is an IEEE senior member, an IEEE speech and language committee member and IEEE industry committee member. She is a reviewer for major data mining, speech, and natural language international conferences and journals. She has chaired and organized multiple conferences in these fields. Dr. Feng has over 70 professional publications and has been granted 42 U.S and international patents.

Gansen Zhao

School of Computer Science, South China Normal University

Topic: On the Security of Smart Contract

Abstract: Smart Contracts are driving BlockChain Application into a much wider area. It embeds business logic into BlockChain systems as automatic execution of computer programs. The execution is imperative and is immune to external intervention. While the mechanism is to implement trusted online compromise on BlockChain, the design and execution of smart contract ode are still subject to various riskes. Investigation of the security of smart contracts, both before deployment and after deployment, are extremely important. This talk shares the exploration on the security of smart contracts before deployment. The exploration takes on the perspective of security testing and exploit testing techniques to understand the potential security risks of smart contracts.

Biography: Dr. Gansen Zhao received his Ph.D from the University of Kent, UK. He had worked for Oracle UK before his academic career. After serving for 2 years for Sun Yat-sen University, Dr. Zhao has been serving as a full professor in School of Computer Science, South China Normal University, China. He is now the deputy dean of School and is leading the Key Lab on Cloud Security and Assessment Technology of Guangzhou.His main research interests include Cloud Security, Trust Management, and BlockChains. He has published extensively in the above areas, and serves as program chairs for a number of conferences.

Meiqin Wang

Professor of Shandong University, China

Topic: Novel Cryptanalysis and Design of Symmetric Ciphers

Abstract: As the cornerstone to assure cybersecurity, the cipher plays a critical role in the security authentication and encipherment protection. With the advantage of high efficiency, the symmetric-key encryption scheme has a broader and more flexible application comparing to the public-key encryption scheme. This report is centred on the design and cryptanalysis of symmetric ciphers. On the aspect of automatic cryptanalysis, we manage to depict the problems in cryptography from the view of operational research and algebraic theory. A series of automatic models regarding different kinds of attack methods are constructed, which become valuable universal analytical tools in the international cryptology field. These new models are integrated into the platform of automatic cryptanalysis, which can efficiently accomplish the tasks in cryptanalysis and plays a crucial part in the design of innovative ciphers. The design and cryptanalysis of ciphers are two complementary sides and bring out the best in each other. Thus, the update of cryptanalytical methods also promotes the development of design techniques. We transform powerful analytical methods into ingenious design techniques and design several novel symmetric ciphers.

Biography: Meiqin Wang takes charge of Executive Vice-President of School of Cyber Science and Technology, Shandong University and Vice-Director of Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University. Supported by the 973 Program, National Natural Science Foundation of China, and Chinese Major Program of National Cryptography Development Foundation, she mainly studies cryptanalysis and design methods of the symmetric cipher. In recent years, she has published more than 60 papers in top conferences and journals of cryptography, including 13 papers in the top 5 international conferences. She was invited to give talks on many international seminars of cryptography, such as the Dagstuhl Seminar on Symmetric Cryptography, Early Symmetric Cryptography (ESC), and Asian-workshop on Symmetric Key Cryptography (ASK). She is a member of a council for the Chinese Association for Cryptologic Research. As a co-chair, she held the third Asian-workshop on Symmetric Key Cryptography. She undertook the program chairs of several top 5 international conferences in the field of cryptography, such as ASIACRYPT and FSE.

David H. Lu - Summit Moderator

Vice President, SDN Platform & Systems Development, AT&T Labs, USA

David Lu , Vice President, SDN Platform & Systems, is responsible for development and engineering of AT&T’s next generation SDN (Software Defined Network) platform enabling AT&T network virtualization and OSS/operation process transformation which includes ECOMP platform and open source ECOMP (ONAP), API, micro-services, policy control & orchestration, hyper-automation, and advanced data analytics. David leads a multifaceted organization with more than 3,000 people across the globe.

David is a well-respected leader across multiple technology domains including: large scale, real time software architecture and development, network performance and traffic management, work flow and policy-controlled automation, large database and big data implementation (mining & analytics), machine learning, artificial intelligence, software reliability and quality, and network operations process engineering. David has led major software platform transformation initiatives from sales to network/service delivery/assurance, and billing platforms. Examples of his David’s achievements include large scale platforms he has both led and engineered that process annually: 984 Trillion Trillion network performance events and 348 Billion alarms with 99.99%+ automation; 60 Million dispatches with 14.4 Billion automated manual steps; and over 90 Billion API transactions.

Since joining AT&T Bell Labs in 1987, David has served in various leadership positions at AT&T. Over the past 15 years, David has led numerous automation initiatives that have resulted in multi-billion-dollar savings and in 2010 he received the CIO 100 Award for his efforts. David holds 45 patents and has frequently appeared as a guest speaker at technical and leadership seminars and conferences throughout the world. David has received numerous industry awards including the 2015 Chairman’s Award from the IEEE Communication Society for Network and Systems Quality and Reliability; and the 2017 CIE AAEOY (Asian America Engineer of Year) Award . David is tremendously active in community organizations and activities including AT&T APCA, DFW-CIE, the DFW Asian American Chamber of Commerce, and was recognized by AT&T APCA in 2015 with the Corporate Leadership Award .

David was accepted to the world-renowned Shanghai Conservatory of Music and came to the U.S. to complete his college education; an undergraduate degree in Music (majoring in cello performance), and a graduate degree in Computer Science.


Tzyh-Jong (TJ) Wang


Dr. TJ Wang is currently with AT&T since 2008. He is a system engineer for mobility operations support systems focusing on mobility network end-to-end performance and reliability. Prior to joining AT&T, TJ was with DEC, Bellcore, Lucent Technologies and UTStarcom between 1987 and 2008.

He received his Ph.D. in Industrial Engineering from the University of Wisconsin-Madison in 1987; and B.S. in Industrial Engineering from Tsing Hua University, Taiwan, in 1978.

Dr. Bin Xie

CEO of InfoBeyond Technology LLC, USA

Dr. Xie received his M.Sc and Ph.D. degrees in Computer Science and Computer Engineering from the University of Louisville, Kentucky, USA, 2003 and 2006 respectively. He is the founder & CEO of the InfoBeyond and the Company is featured as one of 50 fast growth IT small businesses in 2017 by The Silicon Review. InfoBeyond offers (i) NXdrive for data security against data breach, and (ii) Security Policy Tool for access control cybersecurity and the product is honored as a Successful SBIR Story by NIST.

Dr. Xie has awarded $7.5 million research funding from federal governments. He is/was the PI of 20+ R&D projects that are supported by DoD (Army, Navy, Air Force, Missile Defense), DoE, NIST, DoT, DoC, and Kentucky State. Dr. Xie has published 70+ papers in the IEEE conferences and journals. His research interests are focused on cyber security, wireless communication, big data streaming, and user performance. Dr. Xie is the author of books titled Handbook/Encyclopedia of Ad Hoc and Ubiquitous Computing (World Scientific: ISBN-10: 981283348X, World Scientific Publisher, Best-selling in 2012 & 2013), Handbook of Applications and Services for Mobile Systems (Auerbach Publication, Taylor and Francis Group, ISBN: 9781439801529, 2012) and Heterogeneous Wireless Networks- Networking Protocol to Security, (VDM Publishing House: ISBN: 3836419270, 2007.

Dr. Xie severed as a member of NIH Special Emphasis Panel on System Science and Health in the Behavioral and Social Sciences, ZRG1 HDM-Q (50), 2012-2017. He is an editor member of the Journal of International Journal of Information Technology, Communications, and Convergence (IJITCC). He was the Guest Edit Chair of Elsevier Future Generation Computer Systems (FGCS) in a special issue on Mobile Computing, 2012. He delivered a number of speeches in the Army, Navy, Air Force, academic, and industrial societies. Dr. Xie is an IEEE senior member.

Read more about Dr. Bin Xie (Media reports & News):
The Silicon Review
Insight Success
Security Policy Tool News
InfoBeyond Technology LLC

Chi-Ming Chen - Advisor

Ph.D. , AT&T Labs, USA

Chi-Ming Chen joined AT&T in 1995. He is with the AT&T Labs architecture organization which designs the Enhanced Control Orchestration Management Platform (ECOMP) and Open Network Automation Platform (ONAP). Prior to joining AT&T, Chi-Ming was with the Quality Assurance Center of Bell Communications Research (Bellcore) from 1985 to 1995 and was a faculty member at Tsing Hua University, Hsinchu, Taiwan from 1975 to 1979.

He received his Ph.D. in Computer and Information Science from the University of Pennsylvania in 1985; M.S. in Computer Science from the Pennsylvania State University in 1981; M.S. and B.S. in Physics from Tsing Hua University, Taiwan, in 1973 and 1971 respectively.

Chi-Ming Chen is a Life Senior Member of IEEE and Senior Member of the ACM. He is an Advisory Board Member of IEEE Communications Society (ComSoc) Technical Committee on Communications Quality & Reliability (CQR). He was a member of the IEEE GLOBECOM & ICC Management & Strategy (GIMS) Standing Committee and served as the GLOBECOM and ICC Site Selection Chair from 2012 to 2017. He has chaired the Industry Forums of several GLOBECOMs and ICCs and is serving as the GIMS Advisor for ICC 2018, Shanghai, China.

From 2015 to 2017, Chi-Ming was a Steering Committee member of the IEEE SDN Initiative and IEEE Big Data Initiative. Currently, he is co-chairing the 5G Roadmap Working Group of IEEE 5G Initiative. He has been a key Organizing Committee member of CyberC conference since it’s started in 2009. In addition, he also organizes the annual IEEE Emerging Technology Reliability Roundtable (ETR-RT) since 2014.

PPT of Keynote Speaker 2019

The explorations and challenges for


2020 International Conference on Cyber

拜访郑州大学 (Visiting Zhengzhou University)

Fog Radio Access Networks:

IEEE Cyber-C

-Conference 5G Innvation Á Challenge

Towards the Next Stage Evolution of Massive MIMO for 5G and Beyond:

Application-Driven 5G Network

PPT of Keynote Speaker 2018

The explorations and challenges for


2020 International Conference on Cyber

拜访郑州大学 (Visiting Zhengzhou University)

Fog Radio Access Networks:

IEEE Cyber-C

-Conference 5G Innvation Á Challenge

Towards the Next Stage Evolution of Massive MIMO for 5G and Beyond:

Application-Driven 5G Network

PPT of Keynote Speaker 2017

Networking for Big Data

Data & Analytics

Wireless Big Data Analysis:

Big Data Practice

Big Data & Artificial Intelligence

Towards CloudNative,

Embrace the future of all cloud


IEEE SDN Initiative: Status Report

Bad Data Injection in Smart Grid:

Attack and Defense Mechanisms

Fog Computing

for 5G/IoT Development